Skip to main content

A python (Numpy) package for Un-constrained Optimization Functions

Project description

Optimization Function in Numpy (OpFuNu)

PyPI version

Installation

Install the current PyPI release:

pip install opfunu

Or install the development version from GitHub:

pip install git+https://github.com/thieunguyen5991/opfunu

Example

  • All you need to do is: (Make sure your solution is a numpy 1-D array)
## For dimension_based

from opfunu.dimension_based.benchmark2d import Functions        # import 2-d benchmark functions
import numpy as np

solution2d = np.array([-0.1, 1.5])                              # Solution for 2-d benchmark
func2d = Functions()                                            # create an object

print(func2d._bartels_conn__(solution2d))                       # using function in above object
print(func2d._bird__(solution2d))

## For type_based (same as dimension_based)

from opfunu.type_based.multi_modal import Functions             # import 2-d benchmark functions
import numpy as np

## For CEC

from opfunu.cec.cec2014 import Functions                        # import cec2014 functions
import numpy as np

cec_sol = np.array([-0.1, 1.5])                              # Solution for 2-d benchmark
cec_func = Functions()                                            # create an object

print(cec_func.C1(cec_sol))                                  # using function in above object from C1, ..., C30
print(cec_func.C30(cec_sol))

...

Publications

  • If you see my code and data useful and use it, please cites my works here

    • Nguyen, T., Nguyen, T., Nguyen, B. M., & Nguyen, G. (2019). Efficient Time-Series Forecasting Using Neural Network and Opposition-Based Coral Reefs Optimization. International Journal of Computational Intelligence Systems, 12(2), 1144-1161.

    • Nguyen, T., Tran, N., Nguyen, B. M., & Nguyen, G. (2018, November). A Resource Usage Prediction System Using Functional-Link and Genetic Algorithm Neural Network for Multivariate Cloud Metrics. In 2018 IEEE 11th Conference on Service-Oriented Computing and Applications (SOCA) (pp. 49-56). IEEE.

    • Nguyen, T., Nguyen, B. M., & Nguyen, G. (2019, April). Building Resource Auto-scaler with Functional-Link Neural Network and Adaptive Bacterial Foraging Optimization. In International Conference on Theory and Applications of Models of Computation (pp. 501-517). Springer, Cham.

  • This project related to my another projects which are "meta-heuristics" and "neural-network", check it here

Documentation

1. dimension_based references
    1. http://benchmarkfcns.xyz/fcns
    2. https://en.wikipedia.org/wiki/Test_functions_for_optimization
    3. https://www.cs.unm.edu/~neal.holts/dga/benchmarkFunction/
    4. http://www.sfu.ca/~ssurjano/optimization.html

2. type_based
    A Literature Survey of Benchmark Functions For Global Optimization Problems (2013)

3. cec
    Problem Definitions and Evaluation Criteria for the CEC 2014 
Special Session and Competition on Single Objective Real-Parameter Numerical Optimization 

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for opfunu, version 0.4.1
Filename, size File type Python version Upload date Hashes
Filename, size opfunu-0.4.1-py3-none-any.whl (14.9 kB) File type Wheel Python version py3 Upload date Hashes View hashes
Filename, size opfunu-0.4.1.tar.gz (6.8 kB) File type Source Python version None Upload date Hashes View hashes

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page