A python (Numpy) package for Un-constrained Optimization Functions
Project description
Optimization Function in Numpy (OpFuNu)
Installation
Install the current PyPI release:
pip install opfunu
Or install the development version from GitHub:
pip install git+https://github.com/thieunguyen5991/opfunu
Example
- All you need to do is: (Make sure your solution is a numpy 1-D array)
## For dimension_based
from opfunu.dimension_based.benchmark2d import Functions # import 2-d benchmark functions
import numpy as np
solution2d = np.array([-0.1, 1.5]) # Solution for 2-d benchmark
func2d = Functions() # create an object
print(func2d._bartels_conn__(solution2d)) # using function in above object
print(func2d._bird__(solution2d))
## For type_based (same as dimension_based)
from opfunu.type_based.multi_modal import Functions # import 2-d benchmark functions
import numpy as np
## For CEC
from opfunu.cec.cec2014 import Functions # import cec2014 functions
import numpy as np
cec_sol = np.array([-0.1, 1.5]) # Solution for 2-d benchmark
cec_func = Functions() # create an object
print(cec_func.C1(cec_sol)) # using function in above object from C1, ..., C30
print(cec_func.C30(cec_sol))
...
Publications
-
If you see my code and data useful and use it, please cites my works here
-
Nguyen, T., Nguyen, T., Nguyen, B. M., & Nguyen, G. (2019). Efficient Time-Series Forecasting Using Neural Network and Opposition-Based Coral Reefs Optimization. International Journal of Computational Intelligence Systems, 12(2), 1144-1161.
-
Nguyen, T., Tran, N., Nguyen, B. M., & Nguyen, G. (2018, November). A Resource Usage Prediction System Using Functional-Link and Genetic Algorithm Neural Network for Multivariate Cloud Metrics. In 2018 IEEE 11th Conference on Service-Oriented Computing and Applications (SOCA) (pp. 49-56). IEEE.
-
Nguyen, T., Nguyen, B. M., & Nguyen, G. (2019, April). Building Resource Auto-scaler with Functional-Link Neural Network and Adaptive Bacterial Foraging Optimization. In International Conference on Theory and Applications of Models of Computation (pp. 501-517). Springer, Cham.
-
-
This project related to my another projects which are "meta-heuristics" and "neural-network", check it here
Documentation
1. dimension_based references
1. http://benchmarkfcns.xyz/fcns
2. https://en.wikipedia.org/wiki/Test_functions_for_optimization
3. https://www.cs.unm.edu/~neal.holts/dga/benchmarkFunction/
4. http://www.sfu.ca/~ssurjano/optimization.html
2. type_based
A Literature Survey of Benchmark Functions For Global Optimization Problems (2013)
3. cec
Problem Definitions and Evaluation Criteria for the CEC 2014
Special Session and Competition on Single Objective Real-Parameter Numerical Optimization
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file opfunu-0.4.2.tar.gz
.
File metadata
- Download URL: opfunu-0.4.2.tar.gz
- Upload date:
- Size: 18.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.0.0.post20200309 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
f81d23fef1b979c7e8d67b3a09a9432ecb9ad740304bf963f6f5f8c979a36ef8
|
|
MD5 |
8c5fd43d2822b372175af9151867d044
|
|
BLAKE2b-256 |
44a0a0ff330246990612863e13a65ac9a91a7506e97d9d541994366c6c0b3196
|
File details
Details for the file opfunu-0.4.2-py3-none-any.whl
.
File metadata
- Download URL: opfunu-0.4.2-py3-none-any.whl
- Upload date:
- Size: 21.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.0.0.post20200309 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
9fa3cd567fecebde932543da7adf65f70fd630f55c58a2cac7caac314250b55b
|
|
MD5 |
e5e0e7f244eaef021eb0170db314be87
|
|
BLAKE2b-256 |
82ca7a3a64e5e990d154bbce7e94742fbf02e8201363032e5e9654faf934b223
|