Skip to main content

A python (Numpy) package for Un-constrained Optimization Functions

Project description

Optimization Function in Numpy (OpFuNu)

PyPI version

Installation

Install the current PyPI release:

pip install opfunu

Or install the development version from GitHub:

pip install git+https://github.com/thieunguyen5991/opfunu

Example

  • All you need to do is: (Make sure your solution is a numpy 1-D array)
## For dimension_based

from opfunu.dimension_based.benchmark2d import Functions        # import 2-d benchmark functions
import numpy as np

solution2d = np.array([-0.1, 1.5])                              # Solution for 2-d benchmark
func2d = Functions()                                            # create an object

print(func2d._bartels_conn__(solution2d))                       # using function in above object
print(func2d._bird__(solution2d))

## For type_based (same as dimension_based)

from opfunu.type_based.multi_modal import Functions             # import 2-d benchmark functions
import numpy as np

## For CEC

from opfunu.cec.cec2014 import Functions                        # import cec2014 functions
import numpy as np

cec_sol = np.array([-0.1, 1.5])                              # Solution for 2-d benchmark
cec_func = Functions()                                            # create an object

print(cec_func.C1(cec_sol))                                  # using function in above object from C1, ..., C30
print(cec_func.C30(cec_sol))

...

Publications

  • If you see my code and data useful and use it, please cites my works here

    • Nguyen, T., Nguyen, T., Nguyen, B. M., & Nguyen, G. (2019). Efficient Time-Series Forecasting Using Neural Network and Opposition-Based Coral Reefs Optimization. International Journal of Computational Intelligence Systems, 12(2), 1144-1161.

    • Nguyen, T., Tran, N., Nguyen, B. M., & Nguyen, G. (2018, November). A Resource Usage Prediction System Using Functional-Link and Genetic Algorithm Neural Network for Multivariate Cloud Metrics. In 2018 IEEE 11th Conference on Service-Oriented Computing and Applications (SOCA) (pp. 49-56). IEEE.

    • Nguyen, T., Nguyen, B. M., & Nguyen, G. (2019, April). Building Resource Auto-scaler with Functional-Link Neural Network and Adaptive Bacterial Foraging Optimization. In International Conference on Theory and Applications of Models of Computation (pp. 501-517). Springer, Cham.

  • This project related to my another projects which are "meta-heuristics" and "neural-network", check it here

Documentation

1. dimension_based references
    1. http://benchmarkfcns.xyz/fcns
    2. https://en.wikipedia.org/wiki/Test_functions_for_optimization
    3. https://www.cs.unm.edu/~neal.holts/dga/benchmarkFunction/
    4. http://www.sfu.ca/~ssurjano/optimization.html

2. type_based
    A Literature Survey of Benchmark Functions For Global Optimization Problems (2013)

3. cec
    Problem Definitions and Evaluation Criteria for the CEC 2014 
Special Session and Competition on Single Objective Real-Parameter Numerical Optimization 

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

opfunu-0.4.2.tar.gz (18.1 kB view details)

Uploaded Source

Built Distribution

opfunu-0.4.2-py3-none-any.whl (21.2 kB view details)

Uploaded Python 3

File details

Details for the file opfunu-0.4.2.tar.gz.

File metadata

  • Download URL: opfunu-0.4.2.tar.gz
  • Upload date:
  • Size: 18.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.0.0.post20200309 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.5

File hashes

Hashes for opfunu-0.4.2.tar.gz
Algorithm Hash digest
SHA256 f81d23fef1b979c7e8d67b3a09a9432ecb9ad740304bf963f6f5f8c979a36ef8
MD5 8c5fd43d2822b372175af9151867d044
BLAKE2b-256 44a0a0ff330246990612863e13a65ac9a91a7506e97d9d541994366c6c0b3196

See more details on using hashes here.

File details

Details for the file opfunu-0.4.2-py3-none-any.whl.

File metadata

  • Download URL: opfunu-0.4.2-py3-none-any.whl
  • Upload date:
  • Size: 21.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.0.0.post20200309 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.5

File hashes

Hashes for opfunu-0.4.2-py3-none-any.whl
Algorithm Hash digest
SHA256 9fa3cd567fecebde932543da7adf65f70fd630f55c58a2cac7caac314250b55b
MD5 e5e0e7f244eaef021eb0170db314be87
BLAKE2b-256 82ca7a3a64e5e990d154bbce7e94742fbf02e8201363032e5e9654faf934b223

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page