Skip to main content

Remove outliers with some methods

Project description

This is the utils library for removing outliers.

  • Smirnov Grubbs Tests

>>> from outliers import smirnov_grubbs as grubbs

>>> import pandas as pd
>>> data = pd.Series([1, 8, 9, 10, 9])
>>> grubbs.test(data, 0.05)
1     8
2     9
3    10
4     9
dtype: int64

>>> import numpy as np
>>> data = np.array([1, 8, 9, 10, 9])
>>> grubbs.test(data, 0.05)
[ 8  9 10  9]

CHANGES

0.0.1 (2015-12-01)

Publish to pypi

0.0.0 (2015-07-28)

Create this project.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

outlier_utils-0.0.1.tar.gz (2.8 kB view details)

Uploaded Source

Built Distribution

outlier_utils-0.0.1-py3-none-any.whl (4.1 kB view details)

Uploaded Python 3

File details

Details for the file outlier_utils-0.0.1.tar.gz.

File metadata

  • Download URL: outlier_utils-0.0.1.tar.gz
  • Upload date:
  • Size: 2.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for outlier_utils-0.0.1.tar.gz
Algorithm Hash digest
SHA256 4c77f9e28ec2989ff591cf6824f9b74a246ee32304d729fc8a7a7e38e09117d1
MD5 04f076240bd2e7870c22b39669e03983
BLAKE2b-256 51e2e65175bd6e4aad8079c2e715e0f45fbe1ee4e1bdf5eec4c4efbb2d9f7254

See more details on using hashes here.

File details

Details for the file outlier_utils-0.0.1-py3-none-any.whl.

File metadata

File hashes

Hashes for outlier_utils-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 0f2cee9a24bf12015e901c1f4ef86732777d488b3051dddc5609219fa4991602
MD5 6267d536ecbb0a26e6a8f233ca415c59
BLAKE2b-256 5e803793d72337e59d7ec217d2ecb90f3fa238da7b6bc115fc428ce80de7d7cd

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page