Skip to main content

Remove outliers with some methods

Project description

This is the utils library for removing outliers.

  • Smirnov Grubbs Tests

>>> from outliers import smirnov_grubbs as grubbs

>>> import pandas as pd
>>> data = pd.Series([1, 8, 9, 10, 9])
>>> grubbs.test(data, 0.05)
1     8
2     9
3    10
4     9
dtype: int64

>>> import numpy as np
>>> data = np.array([1, 8, 9, 10, 9])
>>> grubbs.test(data, 0.05)
[ 8  9 10  9]

CHANGES

0.0.2 (2015-12-02)

Update setup.py

0.0.1 (2015-12-01)

Publish to pypi

0.0.0 (2015-07-28)

Create this project.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

outlier_utils-0.0.2.tar.gz (3.1 kB view details)

Uploaded Source

Built Distribution

outlier_utils-0.0.2-py3-none-any.whl (4.1 kB view details)

Uploaded Python 3

File details

Details for the file outlier_utils-0.0.2.tar.gz.

File metadata

  • Download URL: outlier_utils-0.0.2.tar.gz
  • Upload date:
  • Size: 3.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for outlier_utils-0.0.2.tar.gz
Algorithm Hash digest
SHA256 0d3e1178c6f2c964076c40ecfde8ab5aa24613ed77c31f5d99ce1478d5afcbce
MD5 5717fd1eb035fd598b0755d82c3ab1a9
BLAKE2b-256 e4ab92ece224a7f8f4834c77285b80715ba57fc4553a96f7f5e7674b619a4e92

See more details on using hashes here.

File details

Details for the file outlier_utils-0.0.2-py3-none-any.whl.

File metadata

File hashes

Hashes for outlier_utils-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 974b39e86f3e69ca4ce3503b710b134105acd7512973b726f7715cb688c8fb00
MD5 dcfa1c57606d1be9037bdb1a544bbbc4
BLAKE2b-256 ed92749d9c6e87a25458ed28df9ceab96e47dbb67f507380dee2dccb0a561053

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page