Skip to main content

Read PLINK files into Pandas data frames

Project description

pandas-plink

Travis Documentation

Pandas-plink is a Python package for reading PLINK binary file format and (since version 2.0.0) PLINK and GCTA realized relationship matrices. The file reading is taken place via lazy loading, meaning that it saves up memory by actually reading only the genotypes that are actually accessed by the user.

Notable changes can be found at the CHANGELOG.md.

Install

It can be installed using pip:

pip install pandas-plink

Alternatively it can be intalled via conda:

conda install -c conda-forge pandas-plink

Usage

It is as simple as

>>> from pandas_plink import read_plink1_bin
>>> G = read_plink1_bin("chr11.bed", "chr11.bim", "chr11.fam", verbose=False)
>>> print(G)
<xarray.DataArray 'genotype' (sample: 14, variant: 779)>
dask.array<shape=(14, 779), dtype=float64, chunksize=(14, 779)>
Coordinates:
  * sample   (sample) object 'B001' 'B002' 'B003' ... 'B012' 'B013' 'B014'
  * variant  (variant) object '11_316849996' '11_316874359' ... '11_345698259'
    father   (sample) <U1 '0' '0' '0' '0' '0' '0' ... '0' '0' '0' '0' '0' '0'
    fid      (sample) <U4 'B001' 'B002' 'B003' 'B004' ... 'B012' 'B013' 'B014'
    gender   (sample) <U1 '0' '0' '0' '0' '0' '0' ... '0' '0' '0' '0' '0' '0'
    i        (sample) int64 0 1 2 3 4 5 6 7 8 9 10 11 12 13
    iid      (sample) <U4 'B001' 'B002' 'B003' 'B004' ... 'B012' 'B013' 'B014'
    mother   (sample) <U1 '0' '0' '0' '0' '0' '0' ... '0' '0' '0' '0' '0' '0'
    trait    (sample) <U2 '-9' '-9' '-9' '-9' '-9' ... '-9' '-9' '-9' '-9' '-9'
    a0       (variant) <U1 'C' 'G' 'G' 'C' 'C' 'T' ... 'T' 'A' 'C' 'A' 'A' 'T'
    a1       (variant) <U1 'T' 'C' 'C' 'T' 'T' 'A' ... 'C' 'G' 'T' 'G' 'C' 'C'
    chrom    (variant) <U2 '11' '11' '11' '11' '11' ... '11' '11' '11' '11' '11'
    cm       (variant) float64 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0
    pos      (variant) int64 157439 181802 248969 ... 28937375 28961091 29005702
    snp      (variant) <U9 '316849996' '316874359' ... '345653648' '345698259'
>>> print(G.sel(sample="B003", variant="11_316874359").values)
0.0
>>> print(G.a0.sel(variant="11_316874359").values)
G
>>> print(G.sel(sample="B003", variant="11_316941526").values)
2.0
>>> print(G.a1.sel(variant="11_316941526").values)
C

Portions of the genotype will be read as the user access them.

Covariance matrices can also be read very easily. Example:

>>> from pandas_plink import read_rel
>>> K = read_rel("plink2.rel.bin")
>>> print(K)
<xarray.DataArray (sample_0: 10, sample_1: 10)>
array([[ 0.885782,  0.233846, -0.186339, -0.009789, -0.138897,  0.287779,
         0.269977, -0.231279, -0.095472, -0.213979],
       [ 0.233846,  1.077493, -0.452858,  0.192877, -0.186027,  0.171027,
         0.406056, -0.013149, -0.131477, -0.134314],
       [-0.186339, -0.452858,  1.183312, -0.040948, -0.146034, -0.204510,
        -0.314808, -0.042503,  0.296828, -0.011661],
       [-0.009789,  0.192877, -0.040948,  0.895360, -0.068605,  0.012023,
         0.057827, -0.192152, -0.089094,  0.174269],
       [-0.138897, -0.186027, -0.146034, -0.068605,  1.183237,  0.085104,
        -0.032974,  0.103608,  0.215769,  0.166648],
       [ 0.287779,  0.171027, -0.204510,  0.012023,  0.085104,  0.956921,
         0.065427, -0.043752, -0.091492, -0.227673],
       [ 0.269977,  0.406056, -0.314808,  0.057827, -0.032974,  0.065427,
         0.714746, -0.101254, -0.088171, -0.063964],
       [-0.231279, -0.013149, -0.042503, -0.192152,  0.103608, -0.043752,
        -0.101254,  1.423033, -0.298255, -0.074334],
       [-0.095472, -0.131477,  0.296828, -0.089094,  0.215769, -0.091492,
        -0.088171, -0.298255,  0.910274, -0.024663],
       [-0.213979, -0.134314, -0.011661,  0.174269,  0.166648, -0.227673,
        -0.063964, -0.074334, -0.024663,  0.914586]])
Coordinates:
  * sample_0  (sample_0) object 'HG00419' 'HG00650' ... 'NA20508' 'NA20753'
  * sample_1  (sample_1) object 'HG00419' 'HG00650' ... 'NA20508' 'NA20753'
    fid       (sample_1) object 'HG00419' 'HG00650' ... 'NA20508' 'NA20753'
    iid       (sample_1) object 'HG00419' 'HG00650' ... 'NA20508' 'NA20753'
>>> print(K.values)
[[ 0.89  0.23 -0.19 -0.01 -0.14  0.29  0.27 -0.23 -0.10 -0.21]
 [ 0.23  1.08 -0.45  0.19 -0.19  0.17  0.41 -0.01 -0.13 -0.13]
 [-0.19 -0.45  1.18 -0.04 -0.15 -0.20 -0.31 -0.04  0.30 -0.01]
 [-0.01  0.19 -0.04  0.90 -0.07  0.01  0.06 -0.19 -0.09  0.17]
 [-0.14 -0.19 -0.15 -0.07  1.18  0.09 -0.03  0.10  0.22  0.17]
 [ 0.29  0.17 -0.20  0.01  0.09  0.96  0.07 -0.04 -0.09 -0.23]
 [ 0.27  0.41 -0.31  0.06 -0.03  0.07  0.71 -0.10 -0.09 -0.06]
 [-0.23 -0.01 -0.04 -0.19  0.10 -0.04 -0.10  1.42 -0.30 -0.07]
 [-0.10 -0.13  0.30 -0.09  0.22 -0.09 -0.09 -0.30  0.91 -0.02]
 [-0.21 -0.13 -0.01  0.17  0.17 -0.23 -0.06 -0.07 -0.02  0.91]]

Please, refer to the pandas-plink documentation for more information.

Authors

License

This project is licensed under the MIT License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for pandas-plink, version 2.0.4
Filename, size File type Python version Upload date Hashes
Filename, size pandas_plink-2.0.4-cp36-cp36m-macosx_10_6_intel.whl (80.0 kB) File type Wheel Python version cp36 Upload date Hashes View
Filename, size pandas_plink-2.0.4-cp36-cp36m-manylinux1_i686.whl (87.1 kB) File type Wheel Python version cp36 Upload date Hashes View
Filename, size pandas_plink-2.0.4-cp36-cp36m-manylinux1_x86_64.whl (88.6 kB) File type Wheel Python version cp36 Upload date Hashes View
Filename, size pandas_plink-2.0.4-cp36-cp36m-manylinux2010_i686.whl (87.1 kB) File type Wheel Python version cp36 Upload date Hashes View
Filename, size pandas_plink-2.0.4-cp36-cp36m-manylinux2010_x86_64.whl (88.6 kB) File type Wheel Python version cp36 Upload date Hashes View
Filename, size pandas_plink-2.0.4-cp36-cp36m-win32.whl (80.8 kB) File type Wheel Python version cp36 Upload date Hashes View
Filename, size pandas_plink-2.0.4-cp36-cp36m-win_amd64.whl (81.7 kB) File type Wheel Python version cp36 Upload date Hashes View
Filename, size pandas_plink-2.0.4-cp37-cp37m-macosx_10_6_intel.whl (80.0 kB) File type Wheel Python version cp37 Upload date Hashes View
Filename, size pandas_plink-2.0.4-cp37-cp37m-manylinux1_i686.whl (87.1 kB) File type Wheel Python version cp37 Upload date Hashes View
Filename, size pandas_plink-2.0.4-cp37-cp37m-manylinux1_x86_64.whl (88.6 kB) File type Wheel Python version cp37 Upload date Hashes View
Filename, size pandas_plink-2.0.4-cp37-cp37m-manylinux2010_i686.whl (87.1 kB) File type Wheel Python version cp37 Upload date Hashes View
Filename, size pandas_plink-2.0.4-cp37-cp37m-manylinux2010_x86_64.whl (88.6 kB) File type Wheel Python version cp37 Upload date Hashes View
Filename, size pandas_plink-2.0.4-cp37-cp37m-win32.whl (80.8 kB) File type Wheel Python version cp37 Upload date Hashes View
Filename, size pandas_plink-2.0.4-cp37-cp37m-win_amd64.whl (81.7 kB) File type Wheel Python version cp37 Upload date Hashes View
Filename, size pandas_plink-2.0.4-cp38-cp38-macosx_10_9_x86_64.whl (77.1 kB) File type Wheel Python version cp38 Upload date Hashes View
Filename, size pandas_plink-2.0.4-cp38-cp38-manylinux1_i686.whl (87.3 kB) File type Wheel Python version cp38 Upload date Hashes View
Filename, size pandas_plink-2.0.4-cp38-cp38-manylinux1_x86_64.whl (88.9 kB) File type Wheel Python version cp38 Upload date Hashes View
Filename, size pandas_plink-2.0.4-cp38-cp38-manylinux2010_i686.whl (87.3 kB) File type Wheel Python version cp38 Upload date Hashes View
Filename, size pandas_plink-2.0.4-cp38-cp38-manylinux2010_x86_64.whl (88.9 kB) File type Wheel Python version cp38 Upload date Hashes View
Filename, size pandas_plink-2.0.4-cp38-cp38-win32.whl (80.8 kB) File type Wheel Python version cp38 Upload date Hashes View
Filename, size pandas_plink-2.0.4-cp38-cp38-win_amd64.whl (81.8 kB) File type Wheel Python version cp38 Upload date Hashes View
Filename, size pandas_plink-2.0.4.tar.gz (70.9 kB) File type Source Python version None Upload date Hashes View

Supported by

Pingdom Pingdom Monitoring Google Google Object Storage and Download Analytics Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page