Skip to main content

Read PLINK files into Pandas data frames

Project description

pandas-plink

Pandas-plink is a Python package for reading PLINK binary file format andrealized relationship matrices (PLINK or GCTA). The file reading is taken place via lazy loading, meaning that it saves up memory by actually reading only the genotypes that are actually accessed by the user.

Notable changes can be found at the CHANGELOG.md.

Install

It can be installed using pip:

pip install pandas-plink

Alternatively it can be intalled via conda:

conda install -c conda-forge pandas-plink

Usage

It is as simple as

>>> from pandas_plink import read_plink1_bin
>>> G = read_plink1_bin("chr11.bed", "chr11.bim", "chr11.fam", verbose=False)
>>> print(G)
<xarray.DataArray 'genotype' (sample: 14, variant: 779)>
dask.array<shape=(14, 779), dtype=float64, chunksize=(14, 779)>
Coordinates:
  * sample   (sample) object 'B001' 'B002' 'B003' ... 'B012' 'B013' 'B014'
  * variant  (variant) object '11_316849996' '11_316874359' ... '11_345698259'
    father   (sample) <U1 '0' '0' '0' '0' '0' '0' ... '0' '0' '0' '0' '0' '0'
    fid      (sample) <U4 'B001' 'B002' 'B003' 'B004' ... 'B012' 'B013' 'B014'
    gender   (sample) <U1 '0' '0' '0' '0' '0' '0' ... '0' '0' '0' '0' '0' '0'
    i        (sample) int64 0 1 2 3 4 5 6 7 8 9 10 11 12 13
    iid      (sample) <U4 'B001' 'B002' 'B003' 'B004' ... 'B012' 'B013' 'B014'
    mother   (sample) <U1 '0' '0' '0' '0' '0' '0' ... '0' '0' '0' '0' '0' '0'
    trait    (sample) <U2 '-9' '-9' '-9' '-9' '-9' ... '-9' '-9' '-9' '-9' '-9'
    a0       (variant) <U1 'C' 'G' 'G' 'C' 'C' 'T' ... 'T' 'A' 'C' 'A' 'A' 'T'
    a1       (variant) <U1 'T' 'C' 'C' 'T' 'T' 'A' ... 'C' 'G' 'T' 'G' 'C' 'C'
    chrom    (variant) <U2 '11' '11' '11' '11' '11' ... '11' '11' '11' '11' '11'
    cm       (variant) float64 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0
    pos      (variant) int64 157439 181802 248969 ... 28937375 28961091 29005702
    snp      (variant) <U9 '316849996' '316874359' ... '345653648' '345698259'
>>> print(G.sel(sample="B003", variant="11_316874359").values)
0.0
>>> print(G.a0.sel(variant="11_316874359").values)
G
>>> print(G.sel(sample="B003", variant="11_316941526").values)
2.0
>>> print(G.a1.sel(variant="11_316941526").values)
C

Portions of the genotype will be read as the user access them.

Covariance matrices can also be read very easily. Example:

>>> from pandas_plink import read_rel
>>> K = read_rel("plink2.rel.bin")
>>> print(K)
<xarray.DataArray (sample_0: 10, sample_1: 10)>
array([[ 0.885782,  0.233846, -0.186339, -0.009789, -0.138897,  0.287779,
         0.269977, -0.231279, -0.095472, -0.213979],
       [ 0.233846,  1.077493, -0.452858,  0.192877, -0.186027,  0.171027,
         0.406056, -0.013149, -0.131477, -0.134314],
       [-0.186339, -0.452858,  1.183312, -0.040948, -0.146034, -0.204510,
        -0.314808, -0.042503,  0.296828, -0.011661],
       [-0.009789,  0.192877, -0.040948,  0.895360, -0.068605,  0.012023,
         0.057827, -0.192152, -0.089094,  0.174269],
       [-0.138897, -0.186027, -0.146034, -0.068605,  1.183237,  0.085104,
        -0.032974,  0.103608,  0.215769,  0.166648],
       [ 0.287779,  0.171027, -0.204510,  0.012023,  0.085104,  0.956921,
         0.065427, -0.043752, -0.091492, -0.227673],
       [ 0.269977,  0.406056, -0.314808,  0.057827, -0.032974,  0.065427,
         0.714746, -0.101254, -0.088171, -0.063964],
       [-0.231279, -0.013149, -0.042503, -0.192152,  0.103608, -0.043752,
        -0.101254,  1.423033, -0.298255, -0.074334],
       [-0.095472, -0.131477,  0.296828, -0.089094,  0.215769, -0.091492,
        -0.088171, -0.298255,  0.910274, -0.024663],
       [-0.213979, -0.134314, -0.011661,  0.174269,  0.166648, -0.227673,
        -0.063964, -0.074334, -0.024663,  0.914586]])
Coordinates:
  * sample_0  (sample_0) object 'HG00419' 'HG00650' ... 'NA20508' 'NA20753'
  * sample_1  (sample_1) object 'HG00419' 'HG00650' ... 'NA20508' 'NA20753'
    fid       (sample_1) object 'HG00419' 'HG00650' ... 'NA20508' 'NA20753'
    iid       (sample_1) object 'HG00419' 'HG00650' ... 'NA20508' 'NA20753'
>>> print(K.values)
[[ 0.89  0.23 -0.19 -0.01 -0.14  0.29  0.27 -0.23 -0.10 -0.21]
 [ 0.23  1.08 -0.45  0.19 -0.19  0.17  0.41 -0.01 -0.13 -0.13]
 [-0.19 -0.45  1.18 -0.04 -0.15 -0.20 -0.31 -0.04  0.30 -0.01]
 [-0.01  0.19 -0.04  0.90 -0.07  0.01  0.06 -0.19 -0.09  0.17]
 [-0.14 -0.19 -0.15 -0.07  1.18  0.09 -0.03  0.10  0.22  0.17]
 [ 0.29  0.17 -0.20  0.01  0.09  0.96  0.07 -0.04 -0.09 -0.23]
 [ 0.27  0.41 -0.31  0.06 -0.03  0.07  0.71 -0.10 -0.09 -0.06]
 [-0.23 -0.01 -0.04 -0.19  0.10 -0.04 -0.10  1.42 -0.30 -0.07]
 [-0.10 -0.13  0.30 -0.09  0.22 -0.09 -0.09 -0.30  0.91 -0.02]
 [-0.21 -0.13 -0.01  0.17  0.17 -0.23 -0.06 -0.07 -0.02  0.91]]

Please, refer to the pandas-plink documentation for more information.

Authors

License

This project is licensed under the MIT License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pandas_plink-2.2.9.tar.gz (77.4 kB view hashes)

Uploaded source

Built Distributions

pandas_plink-2.2.9-cp39-cp39-win_amd64.whl (90.3 kB view hashes)

Uploaded cp39

pandas_plink-2.2.9-cp39-cp39-win32.whl (89.1 kB view hashes)

Uploaded cp39

pandas_plink-2.2.9-cp38-cp38-win_amd64.whl (90.3 kB view hashes)

Uploaded cp38

pandas_plink-2.2.9-cp38-cp38-win32.whl (89.1 kB view hashes)

Uploaded cp38

pandas_plink-2.2.9-cp37-cp37m-win32.whl (89.1 kB view hashes)

Uploaded cp37

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page