protein corona stealth effect prediction
Project description
tags: protein corona nanoparticles stealth effect machine learning
Overview
PCSER is a computational tool for predicting protein corona stealth effects. It was built using the random forest machine learning approach.
📔 Documentation
Please check https://2003100127.github.io/pcser for how to use PCSER.
🛠️ Installation
PCSER can be installed in the following ways.
-
(https://pypi.org/project/pcser)
conda create --name pcser python=3.11 conda activate pcser pip install pcser --upgrade
-
conda create --name pcser python=3.11 conda activate pcser git clone https://github.com/2003100127/pcser.git cd pcser pip install .
🚀 Quick start
import pcser as pcs
pcs.load.evaluate(
data_ref_fpn='./Proteomics_07262023_rv_C57BL6_spl54.xlsx',
sv_fp='./', # None to('data/')
input_fpn='./example.xlsx',
model_fpn='./best_cv.joblib',
sheet_name='a', # a b
# mfi_ref=[10271.33333, 10747, 10303.33333, 9663.333333, 10056],
mfi_ref=[3606.333333, 3606.333333, 3606.333333, 3606.333333],
# is_norm=True,
# norm_met='minmax', # minmax std maxabs
# mode='compo', # compo annot
# mark='spl54', # spl54 spl63
# version='extended', # extended old
)
Then, it outputs what is shown below.
# You are using extended sheets.
# You have selected the minmax normalization method.
# Data summary:
# Number of samples: 54
# Number of features: 419
# You have the samples: ['HuApoA1', 'MoApoA1', 'HuClusterin', 'MoClusterin']
# PCSER predictions:
# stealth_effect MFI
# HuApoA1 0.670762 3099.790003
# MoApoA1 0.662108 3189.458730
# HuClusterin 0.634621 3474.270396
# MoClusterin 0.633914 3481.599008
# stealth_effect MFI
# HuApoA1 0.670762 3099.790003
# MoApoA1 0.662108 3189.458730
# HuClusterin 0.634621 3474.270396
# MoClusterin 0.633914 3481.599008
📄 Citation
@article{PCSER,
title = {PCSER},
author = {Jianfeng Sun},
doi = {xxx},
url = {https://github.com/2003100127/pcser},
journal = {xxx}
year = {2024},
}
🏠 Homepage
📧 Reach us
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file pcser-0.0.2.tar.gz.
File metadata
- Download URL: pcser-0.0.2.tar.gz
- Upload date:
- Size: 25.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.8.3 CPython/3.11.9 Linux/6.5.0-1024-azure
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
0fd638f6b45ab43cd0d32d04b45b1d84e4b789c45b0e1235bae0c4120e29ab2a
|
|
| MD5 |
77bbb1267a038e0672f29ff6535c27ba
|
|
| BLAKE2b-256 |
54d55f082378445f3d70168a6b10892867bc12f34218bcee002d285dc3120fdd
|
File details
Details for the file pcser-0.0.2-py3-none-any.whl.
File metadata
- Download URL: pcser-0.0.2-py3-none-any.whl
- Upload date:
- Size: 28.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.8.3 CPython/3.11.9 Linux/6.5.0-1024-azure
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
3ae8362b786efa87fdc9a2ab790b8ecc3205819fad5d7dc729b10e6daa61a831
|
|
| MD5 |
2f9343140962769baba473edb51b8189
|
|
| BLAKE2b-256 |
1a97c8c8ec278656b7808caf72e6080db3268cfbcb4b561c8b119cd0f4a6e2d8
|