Skip to main content

Postgres to elasticsearch sync

Project description

PostgreSQL to Elasticsearch sync

PGSync <https://pgsync.com>_ is a middleware for syncing data from Postgres <https://www.postgresql.org>_ to Elasticsearch <https://www.elastic.co/products/elastic-stack>.
It allows you to keep Postgres <https://www.postgresql.org>
as your source of truth data source and expose structured denormalized documents in Elasticsearch <https://www.elastic.co/products/elastic-stack>_.

Requirements

  • Python <https://www.python.org>_ 3.6+
  • Postgres <https://www.postgresql.org>_ 9.4+
  • Redis <https://redis.io>_
  • Elasticsearch <https://www.elastic.co/products/elastic-stack>_ 6.3.1+

Postgres setup

Enable logical decoding <https://www.postgresql.org/docs/current/logicaldecoding.html>_ in your Postgres setting.

  • You would also need to set up two parameters in your Postgres config postgresql.conf

    wal_level = logical

    max_replication_slots = 1

Installation

You can install PGSync from PyPI <https://pypi.org>_:

$ pip install pgsync

Config

Create a schema for the application named e.g schema.json

Example schema <https://github.com/toluaina/pgsync/blob/master/examples/airbnb/schema.json>_

Example spec

.. code-block::

[
    {
        "database": "[database name]",
        "index": "[elasticsearch index]",
        "nodes": [
            {
                "table": "[table A]",
                "schema": "[table A schema]",
                "columns": [
                    "column 1 from table A",
                    "column 2 from table A",
                    ... additional columns
                ],
                "children": [
                    {
                        "table": "[table B with relationship to table A]",
                        "schema": "[table B schema]",
                        "columns": [
                          "column 1 from table B",
                          "column 2 from table B",
                          ... additional columns
                        ],
                        "relationship": {
                            "variant": "object",
                            "type": "one_to_many"
                        },
                        ...
                    },
                    {
                        ... any other additional children
                    }
                ]
            }
        ]
    }
]

Environment variables

Setup required environment variables for the application

SCHEMA='/path/to/schema.json'

ELASTICSEARCH_HOST=localhost
ELASTICSEARCH_PORT=9200

PG_HOST=localhost
PG_USER=i-am-root # this must be a postgres superuser
PG_PORT=5432
PG_PASSWORD=*****

REDIS_HOST=redis
REDIS_PORT=6379
REDIS_DB=0
REDIS_AUTH=*****

Running

Bootstrap the database (one time only) $ bootstrap --config schema.json Run pgsync as a daemon $ pgsync --config schema.json --daemon

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pgsync-1.1.30.tar.gz (76.9 kB view details)

Uploaded Source

Built Distribution

pgsync-1.1.30-py2.py3-none-any.whl (38.2 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file pgsync-1.1.30.tar.gz.

File metadata

  • Download URL: pgsync-1.1.30.tar.gz
  • Upload date:
  • Size: 76.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for pgsync-1.1.30.tar.gz
Algorithm Hash digest
SHA256 ef90299201046087733d9ead6021f85915d871d77bc77ce4a339a0bf22bf7491
MD5 4f791d25164d0ab018a063f8b0c2a89d
BLAKE2b-256 6b62660989387a26c275558a97e07ab2729dd21a0c3acfc6cac177835190f8cc

See more details on using hashes here.

File details

Details for the file pgsync-1.1.30-py2.py3-none-any.whl.

File metadata

  • Download URL: pgsync-1.1.30-py2.py3-none-any.whl
  • Upload date:
  • Size: 38.2 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for pgsync-1.1.30-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 eb221686790e17aee7cd4f6dbd8f0d417316127df04ad9bf1338cd9cb8428799
MD5 a460bdc27ff97a91732db39dd04bb66b
BLAKE2b-256 0697cd6e62d4a0b5aa7e0004d94e4e2488d2cdb88370b4d48dfcfd513180c768

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page