Skip to main content

Python bindings for Monte Carlo eXtreme (OpenCL) photon transport simulator

Project description

PMCX-CL - Python bindings for Monte Carlo eXtreme (OpenCL) photon transport simulator

Linux Python Module
MacOS Python Module
Windows Python Module

This module provides a Python binding for Monte Carlo eXtreme for OpenCL (MCXCL). For other binaries, including the standalone executable and the MATLAB bindings, see our website.

Monte Carlo eXtreme (MCX) is a fast photon transport simulation software for 3D heterogeneous turbid media. By taking advantage of the massively parallel threads and extremely low memory latency in a modern graphics processing unit (GPU), MCX is capable of performing Monte Carlo (MC) photon simulations at a blazing speed, typically hundreds to a thousand times faster than a single-threaded CPU-based MC implementation.

How to Install

Runtime Dependencies

  • CPU or GPU: An OpenCL-capable CPU or GPU; most modern CPUs or GPUs support OpenCL - an industrial-standard heterogeneous computing library and specification (https://www.khronos.org/opencl/)
  • OpenCL CPU or GPU runtime/driver: Both NVIDIA and AMD GPU graphics drivers should contain out-of-box OpenCL runtimes or drivers; for Intel GPUs, one should install additional OpenCL runtime support from https://github.com/intel/compute-runtime or install the intel-opencl-icd package if the OS provides (such as Ubuntu 22.04); one can also install an open-source OpenCL runtime POCL, using package manager such as sudo apt-get install pocl-opencl-icd. However, POCL's support is largely limited to CPUs. You do not need to install CUDA SDK to use pmcxcl.
  • Python: Python 3.6 and newer is required. Python 2 is not supported.
  • numpy: Used to pass/receive volumetric information to/from pmcxcl. To install, use either conda or pip package managers: pip install numpy or conda install numpy
  • (optional) jdata: Only needed to read/write JNIfTI output files. To install, use pip: pip install jdata on all operating systems; For Debian-based Linux distributions, you can also install to the system interpreter using apt-get: sudo apt-get install python3-jdata. See https://pypi.org/project/jdata/ for more details.
  • (optional) bjdata: Only needed to read/write BJData/UBJSON files. To install, run pip install bjdata on all operating systems; For Debian-based Linux distributions, you can also install to the system interpreter using apt-get: sudo apt-get install python3-bjdata. See https://pypi.org/project/bjdata/ for more details.
  • (optional) matplotlib: For plotting the results. To install, run either pip install matplotlib or conda install matplotlib

Build Instructions

Build Dependencies

  • Operating System: pmcxcl and mcxcl can be compiled on most OSes, including Windows, Linux and MacOS.

  • OpenCL library: compiling mcxcl or pmcxcl requires to link with libOpenCL.so on Linux, or libOpenCL.dylib on MacOS or OpenCL.dll on Windows. These libraries should have been installed by either graphics driver or OpenCL runtimes.

  • Python Interpreter: Python 3.6 or above. The pip Python package manager and the wheel package (available via pip) are not required but recommended.

  • C/C++ Compiler: pmcxcl can be compiled using a wide variety of C compilers, including

    • GNU GCC for Linux, MacOS (intalled via MacPorts or brew), and Windows (installed via msys2, mingw64 or cygwin64)
    • Microsoft Visual Studio C/C++ Compiler for Windows.
    • Apple Clang for macOS, available via Xcode.

    Refer to each OS's online documentations for more in-depth information on how to install these compilers. MacOS provides built-in OpenCL library support.

  • OpenMP: The installed C/C++ Compiler should have support for OpenMP. GCC and Microsoft Visual Studio compiler support OpenMP out of the box. Apple Clang, however, requires manual installation of OpenMP libraries for Apple Clang. The easiest way to do this is via the Brew package manager, preferably after selecting the correct Xcode version:

      brew install libomp
      brew link --force libomp
    
  • CMake: CMake version 3.15 and later is required. Refer to the CMake website for more information on how to download. CMake is also widely available on package managers across all operating systems.

Build Steps

  1. Ensure that cmake, python and the C/C++ compiler are all located over your PATH. This can be queried via echo $env:PATH on Windows or echo $PATH on Linux. If not, locate them and add their folder to the PATH.

  2. Clone the repository and switch to the pmcxcl/ folder:

        git clone --recursive https://github.com/fangq/mcx.git
        cd mcx/pmcxcl
    
  3. One can run python3 setup.py install or python3 -m pip install . to both locally build and install the module

  4. If one only wants to locally build the module, one should run python3 -m pip wheel .

  5. If the binary module is successfully built locally, you should see a binary wheel file pmcxcl-X.X.X-cpXX-cpXX-*.whl stored inside the mcxcl/pmcxcl folder. You can install this wheel package using python3 -m pip install --force-reinstall pmcxcl-*.whl to force installing this locally compiled pmcxcl module and overwrite any previously installed versions.

How to use

The PMCXCL module is easy to use. You can use the pmcxcl.gpuinfo() function to first verify if you have NVIDIA/CUDA compatible GPUs installed; if there are NVIDIA GPUs detected, you can then call the run() function to launch a photon simulation.

A simulation can be defined conveniently in two approaches - a one-liner and a two-liner:

  • For the one-liner, one simply pass on each MCX simulation setting as positional argument. The supported setting names are compatible to nearly all the input fields for the MATLAB version of MCX/MCXCL - MCXLAB)
import pmcxcl
import numpy as np
import matplotlib.pyplot as plt

res = pmcxcl.run(nphoton=1000000, vol=np.ones([60, 60, 60], dtype='uint8'), tstart=0, tend=5e-9, 
               tstep=5e-9, srcpos=[30,30,0], srcdir=[0,0,1], prop=np.array([[0, 0, 1, 1], [0.005, 1, 0.01, 1.37]]))
res['flux'].shape

plt.imshow(np.log10(res['flux'][30,:, :]))
plt.show()
  • Alternatively, one can also define a Python dict object containing each setting as a key, and pass on the dict object to pmcxcl.run()
import pmcxcl
import numpy as np
cfg = {'nphoton': 1000000, 'vol':np.ones([60,60,60],dtype='uint8'), 'tstart':0, 'tend':5e-9, 'tstep':5e-9,
       'srcpos': [30,30,0], 'srcdir':[0,0,1], 'prop':[[0,0,1,1],[0.005,1,0.01,1.37]]}
res = pmcxcl.run(cfg)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

pmcxcl-0.4.0-pp311-pypy311_pp73-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (1.0 MB view details)

Uploaded PyPymanylinux: glibc 2.17+ x86-64

pmcxcl-0.4.0-pp310-pypy310_pp73-win_amd64.whl (965.3 kB view details)

Uploaded PyPyWindows x86-64

pmcxcl-0.4.0-pp310-pypy310_pp73-macosx_14_0_arm64.whl (522.6 kB view details)

Uploaded PyPymacOS 14.0+ ARM64

pmcxcl-0.4.0-pp310-pypy310_pp73-macosx_13_0_x86_64.whl (535.6 kB view details)

Uploaded PyPymacOS 13.0+ x86-64

pmcxcl-0.4.0-pp39-pypy39_pp73-win_amd64.whl (965.6 kB view details)

Uploaded PyPyWindows x86-64

pmcxcl-0.4.0-pp39-pypy39_pp73-macosx_14_0_arm64.whl (522.6 kB view details)

Uploaded PyPymacOS 14.0+ ARM64

pmcxcl-0.4.0-pp39-pypy39_pp73-macosx_13_0_x86_64.whl (535.5 kB view details)

Uploaded PyPymacOS 13.0+ x86-64

pmcxcl-0.4.0-pp38-pypy38_pp73-win_amd64.whl (965.8 kB view details)

Uploaded PyPyWindows x86-64

pmcxcl-0.4.0-pp38-pypy38_pp73-macosx_14_0_arm64.whl (522.7 kB view details)

Uploaded PyPymacOS 14.0+ ARM64

pmcxcl-0.4.0-pp38-pypy38_pp73-macosx_13_0_x86_64.whl (535.7 kB view details)

Uploaded PyPymacOS 13.0+ x86-64

pmcxcl-0.4.0-pp37-pypy37_pp73-win_amd64.whl (965.8 kB view details)

Uploaded PyPyWindows x86-64

pmcxcl-0.4.0-pp37-pypy37_pp73-macosx_13_0_x86_64.whl (535.2 kB view details)

Uploaded PyPymacOS 13.0+ x86-64

pmcxcl-0.4.0-cp314-cp314t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.14tmanylinux: glibc 2.17+ x86-64

pmcxcl-0.4.0-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.14manylinux: glibc 2.17+ x86-64

pmcxcl-0.4.0-cp313-cp313t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.13tmanylinux: glibc 2.17+ x86-64

pmcxcl-0.4.0-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ x86-64

pmcxcl-0.4.0-cp313-cp313-macosx_14_0_universal2.whl (523.1 kB view details)

Uploaded CPython 3.13macOS 14.0+ universal2 (ARM64, x86-64)

pmcxcl-0.4.0-cp313-cp313-macosx_13_0_universal2.whl (536.1 kB view details)

Uploaded CPython 3.13macOS 13.0+ universal2 (ARM64, x86-64)

pmcxcl-0.4.0-cp312-cp312-win_amd64.whl (967.3 kB view details)

Uploaded CPython 3.12Windows x86-64

pmcxcl-0.4.0-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

pmcxcl-0.4.0-cp312-cp312-macosx_14_0_universal2.whl (523.1 kB view details)

Uploaded CPython 3.12macOS 14.0+ universal2 (ARM64, x86-64)

pmcxcl-0.4.0-cp312-cp312-macosx_13_0_universal2.whl (536.1 kB view details)

Uploaded CPython 3.12macOS 13.0+ universal2 (ARM64, x86-64)

pmcxcl-0.4.0-cp311-cp311-win_amd64.whl (968.6 kB view details)

Uploaded CPython 3.11Windows x86-64

pmcxcl-0.4.0-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

pmcxcl-0.4.0-cp311-cp311-macosx_14_0_universal2.whl (524.8 kB view details)

Uploaded CPython 3.11macOS 14.0+ universal2 (ARM64, x86-64)

pmcxcl-0.4.0-cp311-cp311-macosx_13_0_universal2.whl (537.7 kB view details)

Uploaded CPython 3.11macOS 13.0+ universal2 (ARM64, x86-64)

pmcxcl-0.4.0-cp310-cp310-win_amd64.whl (966.7 kB view details)

Uploaded CPython 3.10Windows x86-64

pmcxcl-0.4.0-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

pmcxcl-0.4.0-cp310-cp310-macosx_14_0_universal2.whl (523.2 kB view details)

Uploaded CPython 3.10macOS 14.0+ universal2 (ARM64, x86-64)

pmcxcl-0.4.0-cp310-cp310-macosx_13_0_x86_64.whl (536.5 kB view details)

Uploaded CPython 3.10macOS 13.0+ x86-64

pmcxcl-0.4.0-cp39-cp39-win_amd64.whl (966.1 kB view details)

Uploaded CPython 3.9Windows x86-64

pmcxcl-0.4.0-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

pmcxcl-0.4.0-cp39-cp39-macosx_14_0_universal2.whl (523.3 kB view details)

Uploaded CPython 3.9macOS 14.0+ universal2 (ARM64, x86-64)

pmcxcl-0.4.0-cp39-cp39-macosx_13_0_x86_64.whl (536.6 kB view details)

Uploaded CPython 3.9macOS 13.0+ x86-64

pmcxcl-0.4.0-cp38-cp38-win_amd64.whl (965.8 kB view details)

Uploaded CPython 3.8Windows x86-64

pmcxcl-0.4.0-cp38-cp38-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

pmcxcl-0.4.0-cp38-cp38-macosx_14_0_universal2.whl (523.0 kB view details)

Uploaded CPython 3.8macOS 14.0+ universal2 (ARM64, x86-64)

pmcxcl-0.4.0-cp38-cp38-macosx_13_0_x86_64.whl (536.5 kB view details)

Uploaded CPython 3.8macOS 13.0+ x86-64

pmcxcl-0.4.0-cp37-cp37m-win_amd64.whl (968.0 kB view details)

Uploaded CPython 3.7mWindows x86-64

pmcxcl-0.4.0-cp37-cp37m-macosx_13_0_x86_64.whl (535.4 kB view details)

Uploaded CPython 3.7mmacOS 13.0+ x86-64

pmcxcl-0.4.0-cp36-cp36m-win_amd64.whl (968.1 kB view details)

Uploaded CPython 3.6mWindows x86-64

pmcxcl-0.4.0-cp36-cp36m-macosx_13_0_x86_64.whl (535.4 kB view details)

Uploaded CPython 3.6mmacOS 13.0+ x86-64

File details

Details for the file pmcxcl-0.4.0-pp311-pypy311_pp73-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for pmcxcl-0.4.0-pp311-pypy311_pp73-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 2a349dc08349d0a3fd3fd10138059766515193a0829cce39ae6da70f5b2bf7de
MD5 c6596a71dac706566234621096026773
BLAKE2b-256 18f677a9231e1f69d0896c0701af5a641db558dcb655356d833b259900965971

See more details on using hashes here.

File details

Details for the file pmcxcl-0.4.0-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pmcxcl-0.4.0-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 4426c868647c771a688da46a223bbb2c1203732787bc12fee86b195e5581014a
MD5 d11917ac345395aa31652634c7967024
BLAKE2b-256 c853088c319708b0b81a9c64277adf15d36135deb8a836baa1cc601bd00d62e4

See more details on using hashes here.

File details

Details for the file pmcxcl-0.4.0-pp310-pypy310_pp73-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for pmcxcl-0.4.0-pp310-pypy310_pp73-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 11cdc647d16aa1e433b9511236b7ed0d9fe26561570743e505b592a91fdb5245
MD5 919a2c7ab66db96b29bb033c33b0df11
BLAKE2b-256 7593179d9c8b37bf364c8a3d03af1b8bf4fa98ab4fb07562dae8aa7df3889a74

See more details on using hashes here.

File details

Details for the file pmcxcl-0.4.0-pp310-pypy310_pp73-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for pmcxcl-0.4.0-pp310-pypy310_pp73-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 2b1fe94f1aad917bd88cf1a6124244b2ce93e320d211914564880c6f8b4b10e4
MD5 d514fc972dfd11e9e26c6818189a12d6
BLAKE2b-256 1931fa57032d44e0bcb7e64d36d27f1b4ee3c7825ba096534acc0e29a20b565a

See more details on using hashes here.

File details

Details for the file pmcxcl-0.4.0-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pmcxcl-0.4.0-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 53f5dc6ebb8257780e781c5f5c3e8055c150e1844a5a225079dcc3b6f5009bbb
MD5 8452d971c4dc3367b3c85dbea3a6f288
BLAKE2b-256 84967ac8d5df34a9d29e5d780f585dbbb5e94d71eeb36545b29155a8da691267

See more details on using hashes here.

File details

Details for the file pmcxcl-0.4.0-pp39-pypy39_pp73-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for pmcxcl-0.4.0-pp39-pypy39_pp73-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 1911a519034bf4e7eb0fd6154a955fdf32e3f44c2eeaef18f5a2fad24deab99f
MD5 7bbf4e355b39fa68a68dc5835528992a
BLAKE2b-256 150b6c505b7714f18795b47f11a1994919156962ee5c2e6f2bfca71255c08c68

See more details on using hashes here.

File details

Details for the file pmcxcl-0.4.0-pp39-pypy39_pp73-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for pmcxcl-0.4.0-pp39-pypy39_pp73-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 000905007d34ecdfa8b1f97dd7ab6ec1bd13503ada6bf794f79b7a8cd5b2cfef
MD5 e8c25bc585e30dc0b2a5d9d08931a07b
BLAKE2b-256 f93c27c5c5a2c8dc7933de4793ae78bce4bfb3fce4992d10483186bd2356ea4e

See more details on using hashes here.

File details

Details for the file pmcxcl-0.4.0-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pmcxcl-0.4.0-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 dea1c7029123242497b8e8ac9b9248308e211215c3fa4399558481a37eaf0394
MD5 49ed49ff4d6c1be147b32cbf1eabd389
BLAKE2b-256 64edf1863d5ecc5ec8db83d3c14ffecde36b68322554781d82f4ccc483efddaa

See more details on using hashes here.

File details

Details for the file pmcxcl-0.4.0-pp38-pypy38_pp73-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for pmcxcl-0.4.0-pp38-pypy38_pp73-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 95e0c4189571812bc61f9979b14e8beb61ac68b28b115f0f6a6b5048eab98b3d
MD5 ce48bdafed1ea362fde7243006a0ca64
BLAKE2b-256 bdfbb2ebf517b2a75aa5f306b824bb00cd50e583be6f556badac4badd4a0edbe

See more details on using hashes here.

File details

Details for the file pmcxcl-0.4.0-pp38-pypy38_pp73-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for pmcxcl-0.4.0-pp38-pypy38_pp73-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 1df53422994a0a7e65cb24c1850f8994369609a331d34e9f1dd2cfa514c2ce16
MD5 7d34d1999f0d08c819eed5b4f249a3e4
BLAKE2b-256 df45513821ad9a3a5d97b5f344c6a87e1c7b500d6cc8d16e33a38e8407960251

See more details on using hashes here.

File details

Details for the file pmcxcl-0.4.0-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pmcxcl-0.4.0-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 5f333e6490cfdaa520ca9a8af01b834e524cf51e6a663dc80b3f44cbeb2be3d1
MD5 3fe81967828e7fe53a0be09302ed40b5
BLAKE2b-256 1ffe625d82b36cc2bd74e8bbfa47c7414731dfc8ba209433f29925599c13496a

See more details on using hashes here.

File details

Details for the file pmcxcl-0.4.0-pp37-pypy37_pp73-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for pmcxcl-0.4.0-pp37-pypy37_pp73-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 98970fd1d2f1d4d1cb3ab0e2543b0f8d6e5faef11b6ffaf8b6e73489d5b79816
MD5 16a8a48c63f94ad7eda1af3fd39f22cc
BLAKE2b-256 42e14ec577a435271b874e4a70ff74a69898ae83e7a2cf2c50799e6b48e5e9ec

See more details on using hashes here.

File details

Details for the file pmcxcl-0.4.0-cp314-cp314t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for pmcxcl-0.4.0-cp314-cp314t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 ff89bdb80bf432993e6a15816bc595a8e97f53c54e8dccc4f12a15afbbf3a991
MD5 1b2e4ab4cc02935797e9baeab5e49674
BLAKE2b-256 fe4a08cefaf5c40631b8badf1d72ee12cea180466fd532dffd5ea4ed46ea79dd

See more details on using hashes here.

File details

Details for the file pmcxcl-0.4.0-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for pmcxcl-0.4.0-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 1cc2c079477e13d2e1ab447efd10ba57ca2b9d6719d0e041560b08a872399ec0
MD5 87a01da9f1adba5456f19d79c782acda
BLAKE2b-256 427da8ec405392b3c4e7a55d99199a05b0e0eba8e6103baf73e24d8a8d9e8688

See more details on using hashes here.

File details

Details for the file pmcxcl-0.4.0-cp313-cp313t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for pmcxcl-0.4.0-cp313-cp313t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 9b380b1a94d1348649d198c932f3a47c843683a6597a63e9be70a21b96b9a5a5
MD5 af125974731f719a71648ccd59d79339
BLAKE2b-256 25c4b934750721dced5d69ab9bf949314000dcb97428c8b7a52c2b348198a337

See more details on using hashes here.

File details

Details for the file pmcxcl-0.4.0-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for pmcxcl-0.4.0-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 42559cf5588b2cb0dc8c4081ccb8b1a79352d156bf71a4ff93e42cde50a7cecb
MD5 e5bd1e2461e7e510ac41b2417369e844
BLAKE2b-256 073929901bb510c92cb808517cc5e85890f8939fe9d739afb98fcb46d7852499

See more details on using hashes here.

File details

Details for the file pmcxcl-0.4.0-cp313-cp313-macosx_14_0_universal2.whl.

File metadata

File hashes

Hashes for pmcxcl-0.4.0-cp313-cp313-macosx_14_0_universal2.whl
Algorithm Hash digest
SHA256 fd53c6fa2853c0901b2a0c959d0c0298f35d288d54cd418962ac53fe3b10d3b4
MD5 6f7e6002b1e9694058cffe4e7db753c7
BLAKE2b-256 79a5d3d0e1ff26a6ff5a6c5bcae704eb0ff662b628f4ebc0aea025a3cf2d5cb9

See more details on using hashes here.

File details

Details for the file pmcxcl-0.4.0-cp313-cp313-macosx_13_0_universal2.whl.

File metadata

File hashes

Hashes for pmcxcl-0.4.0-cp313-cp313-macosx_13_0_universal2.whl
Algorithm Hash digest
SHA256 2d2c19fb6ac073be55fefcf6fddb1e82bd0194a1fb125ce3ca26b82a6eaefbed
MD5 8a15686669855de18b146931c7191c24
BLAKE2b-256 6f9bec450b7c9b8947a03045a6bedd12b462c04fd1f16b0b7e6f6333c90c8d7e

See more details on using hashes here.

File details

Details for the file pmcxcl-0.4.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: pmcxcl-0.4.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 967.3 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for pmcxcl-0.4.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 72d46ecb1f36dea423a40cf9a437c87ff9341dcc267945005f64a5d3ff7241a9
MD5 09eb025c5a66d5a029d105c621333641
BLAKE2b-256 72269f5b2300d382236e570c837dacfce448300a58fcacf6306a7baa6315b07c

See more details on using hashes here.

File details

Details for the file pmcxcl-0.4.0-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for pmcxcl-0.4.0-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 099a400bf8702a81911d33323476e30c1bbfb59544a266a322873cd3b6f784ca
MD5 d817fa4adc4c30ea20df46c344be1c42
BLAKE2b-256 7e2ffb7a051b68620f7ef1e89d8a203db3436a37936a91e96030f957c780d989

See more details on using hashes here.

File details

Details for the file pmcxcl-0.4.0-cp312-cp312-macosx_14_0_universal2.whl.

File metadata

File hashes

Hashes for pmcxcl-0.4.0-cp312-cp312-macosx_14_0_universal2.whl
Algorithm Hash digest
SHA256 aabba0b47a076dd1095e88183fadd927dd5588ee9346d7dc86bc80443b4cd33a
MD5 2826fa655561f9fd15d43152442d8ee3
BLAKE2b-256 fd11ef01f2491d59bdd513b62785e78c5f66fe0e3f860785ec525e5b98a506f3

See more details on using hashes here.

File details

Details for the file pmcxcl-0.4.0-cp312-cp312-macosx_13_0_universal2.whl.

File metadata

File hashes

Hashes for pmcxcl-0.4.0-cp312-cp312-macosx_13_0_universal2.whl
Algorithm Hash digest
SHA256 f79f384a1fb1e24fc12dc04103b677af9eabc747ca39591c1181b2faca2db3e8
MD5 3a8b78c51c35f4d54e5e9b7eceac0deb
BLAKE2b-256 4859cb779baad1ef0d53b8b5480b938004efab3c435679c586953e995d180dca

See more details on using hashes here.

File details

Details for the file pmcxcl-0.4.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: pmcxcl-0.4.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 968.6 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for pmcxcl-0.4.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 c529eca783a46e6891f8de7e543a054919cf51520df7ca47c0f04a67fb7007c6
MD5 048c02c1c49f8e260384758ace65e2c5
BLAKE2b-256 a6fa610bbec5fe0f2ba0670ae9d5640a863bbdbce29a659bc40c4b0ceb0e09f9

See more details on using hashes here.

File details

Details for the file pmcxcl-0.4.0-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for pmcxcl-0.4.0-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 1f2c2891c8b9b8ec16287911d37fa1e44c58d96067fa12701e7b89a1e9d2c3a9
MD5 a27e3da9b9006f60b42e4009373aeaf8
BLAKE2b-256 63a65e824d5830761bd4e135b79e1785160788a497a8838796483ecd7021871b

See more details on using hashes here.

File details

Details for the file pmcxcl-0.4.0-cp311-cp311-macosx_14_0_universal2.whl.

File metadata

File hashes

Hashes for pmcxcl-0.4.0-cp311-cp311-macosx_14_0_universal2.whl
Algorithm Hash digest
SHA256 61e747718bb88f15afca9524b99f09c8ba9298aa1b9e4cd2b77d554f71c5170f
MD5 2cc593c8fc2ed7e3e0a89366a9b058b6
BLAKE2b-256 b1fa5efebc1239bc76244c4674d7ef35552c4000b886a3bcc5a9bedfe52bd90c

See more details on using hashes here.

File details

Details for the file pmcxcl-0.4.0-cp311-cp311-macosx_13_0_universal2.whl.

File metadata

File hashes

Hashes for pmcxcl-0.4.0-cp311-cp311-macosx_13_0_universal2.whl
Algorithm Hash digest
SHA256 95f37fa85030f348c7f04e99f59d005a3edb246a3ac3405443c7382210b0fc98
MD5 c400289b72cbad06165f322ad9e22642
BLAKE2b-256 09e5065efba39ca69907af12241107a30ae6c47b9f529baaaa88b54312f433d0

See more details on using hashes here.

File details

Details for the file pmcxcl-0.4.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pmcxcl-0.4.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 966.7 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for pmcxcl-0.4.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 b1ed5587ec11eb39a426a557a294a52976359fb963749b532e40780ed5e7bc24
MD5 8684f8acdf2f48843232c24259f19fe1
BLAKE2b-256 6949064d08fa6b7de1778fe8b5a8d04117bb9de8219c1c4ec403588123be3b2f

See more details on using hashes here.

File details

Details for the file pmcxcl-0.4.0-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for pmcxcl-0.4.0-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 4ad6a2cda6ad95c19a5a368bc23a551419b262182ac524fd9b833dcf0aba7297
MD5 caf5e3d71d62be5a57c187b8610f668b
BLAKE2b-256 3002bca0c7604c34c320d04d26e1cff80d4cd2f4a71f3487e273d9a5c2be8616

See more details on using hashes here.

File details

Details for the file pmcxcl-0.4.0-cp310-cp310-macosx_14_0_universal2.whl.

File metadata

File hashes

Hashes for pmcxcl-0.4.0-cp310-cp310-macosx_14_0_universal2.whl
Algorithm Hash digest
SHA256 eb5fb4dddedf493eddbdd1c15e688e414c3412b9b3ff0ee7b1c277db471b5c7e
MD5 442c074c11d33cb5d24e98bb02d256eb
BLAKE2b-256 41714af1701b417513731ce6b40c23d2015d70c0e6ce6f07a910a29512280267

See more details on using hashes here.

File details

Details for the file pmcxcl-0.4.0-cp310-cp310-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for pmcxcl-0.4.0-cp310-cp310-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 c909dac54548bbda6dd3d039cce2d5e603bfec2e523ab6f80349b48bb48b4542
MD5 6b293773a6bf7aedf0e2622fb094f231
BLAKE2b-256 abd94cee647061e52b8e54b46e271d7fe744f610a32bafe2587542766ed695d5

See more details on using hashes here.

File details

Details for the file pmcxcl-0.4.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pmcxcl-0.4.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 966.1 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for pmcxcl-0.4.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 aaad7557a735982afa70ea7357171948cb8b3676518e2d038e8a7d5ddc08ecaa
MD5 ef7ec1d4c18ee5768038065fe4893cd3
BLAKE2b-256 1b1404d955aec281b71e88c31314434c02106c202b42cc6672b779f8428f9d9f

See more details on using hashes here.

File details

Details for the file pmcxcl-0.4.0-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for pmcxcl-0.4.0-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 b98580136f0d860d44d84f122b1b2cded3f06a7ff8f99b1294b9652f603ec046
MD5 f538a45392edc7e7c0c55c806cafe2ed
BLAKE2b-256 f7e898b040a338fcb8ccfaa2f6f25042072225c914e8345bb4ac5e698d6363df

See more details on using hashes here.

File details

Details for the file pmcxcl-0.4.0-cp39-cp39-macosx_14_0_universal2.whl.

File metadata

File hashes

Hashes for pmcxcl-0.4.0-cp39-cp39-macosx_14_0_universal2.whl
Algorithm Hash digest
SHA256 c64538fd2728ae7e7423c9d3108b6b605d75d9745851a8889a1c8b0c160165c3
MD5 1a6c1bbd5ab0daa00144f854bc9137e2
BLAKE2b-256 cfce374f947697d5a791fc23ea26c217f13d7ab0f380d5a84324a32228eff049

See more details on using hashes here.

File details

Details for the file pmcxcl-0.4.0-cp39-cp39-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for pmcxcl-0.4.0-cp39-cp39-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 2340fd4234079833386bf577dc838607b218a5b2e259a92ae867f8dea9e5486e
MD5 676a03ca1cd1f2b0dfbdc7609f9d642c
BLAKE2b-256 6f511c67870343c685d2ba73392e479f0610a9885e9ac97d9f18559278f75fff

See more details on using hashes here.

File details

Details for the file pmcxcl-0.4.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pmcxcl-0.4.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 965.8 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for pmcxcl-0.4.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 37c4d65ed4fc5d5909435d78e9cc8da5a3e87f1b500e97d6598432dc035fcd61
MD5 619ee55fd9bf8a2a9b8dc94c4b20a511
BLAKE2b-256 1714996cb826aa5cc616967ee210d4beabb8640c1ab364cb514ec6e2a0487d25

See more details on using hashes here.

File details

Details for the file pmcxcl-0.4.0-cp38-cp38-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for pmcxcl-0.4.0-cp38-cp38-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 773efe588998b2e47e7770e2eb7a0dc30b5b18204ff22e2b1fb2717e16d75ffc
MD5 d8adb67fcb9a8e4573c5f0fd4a1f27a6
BLAKE2b-256 31ed01dbc6a290c60bc142b6c2a86b523b8e40c4eef8ad552104bc3b6947f08d

See more details on using hashes here.

File details

Details for the file pmcxcl-0.4.0-cp38-cp38-macosx_14_0_universal2.whl.

File metadata

File hashes

Hashes for pmcxcl-0.4.0-cp38-cp38-macosx_14_0_universal2.whl
Algorithm Hash digest
SHA256 5c466cdea8fc91117735276772caa33623033501d0efd75c8eed6294391ae7b1
MD5 9fcf59bd02001ecbe604d107cbbcad4b
BLAKE2b-256 d01c6f3a94bc4cb8d94121e14c34b56893da1f3fac0d9b389c9311e4f79af297

See more details on using hashes here.

File details

Details for the file pmcxcl-0.4.0-cp38-cp38-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for pmcxcl-0.4.0-cp38-cp38-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 357f7843a92eb2d3c243a92a638486356e2be1e357c7425c9d3c5871f7ab6120
MD5 e2d282ee06462eb4d79f314ef12a40d0
BLAKE2b-256 50926280f43768b532decdc9989fa81780dad1edd19aa94a43820569f0eec9ff

See more details on using hashes here.

File details

Details for the file pmcxcl-0.4.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pmcxcl-0.4.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 968.0 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for pmcxcl-0.4.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 3fdd983abe89664dc823f2782e69cdc3a433141dbc8cacb3bd971be762b4899f
MD5 f250a8efa38707d16caaa01ee626511d
BLAKE2b-256 637a056fc80cb50d9b6fc4643a1123877ad71cb944e509d13598e2e7b5095857

See more details on using hashes here.

File details

Details for the file pmcxcl-0.4.0-cp37-cp37m-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for pmcxcl-0.4.0-cp37-cp37m-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 4285d0dc509bb5b6e7638446d12bd214f2f7322f1d7f9630a94010f565c34a6f
MD5 79bcfa8c53792236232681db4154906a
BLAKE2b-256 117eab7a05f52e9b70852ca90506c44efdf1e536aa0050ce364c81b5246fbba5

See more details on using hashes here.

File details

Details for the file pmcxcl-0.4.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: pmcxcl-0.4.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 968.1 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for pmcxcl-0.4.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 eed26f78e08eeb70d3f6c4babd858a29856c07035c43591ca7bd627352301af1
MD5 84134d70281458c486aae6c391f1eec0
BLAKE2b-256 05bc35f7f4444997c86c1392aa80167df4113e6666f7aedeca94f528dcf23802

See more details on using hashes here.

File details

Details for the file pmcxcl-0.4.0-cp36-cp36m-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for pmcxcl-0.4.0-cp36-cp36m-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 1173c58a356547eb9ec467420bcd1607fbc11a112a9894bf2fca33af29d3c12f
MD5 0af582b269eac64f73e85c6088489b61
BLAKE2b-256 3f0d64998a1305abc5925e25aca28753a6ebbf4f587ebce830eeb89540a7af2b

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page