Skip to main content

No project description provided

Project description

Polars

rust docs Build and test Gitter

Blazingly fast DataFrames in Rust & Python

Polars is a blazingly fast DataFrames library implemented in Rust using Apache Arrow(2) as memory model.

  • Lazy | eager execution
  • Multi-threaded
  • SIMD
  • Query optimization
  • Powerful expression API
  • Rust | Python | ...

To learn more, read the User Guide.

>>> df = pl.DataFrame(
    {
        "A": [1, 2, 3, 4, 5],
        "fruits": ["banana", "banana", "apple", "apple", "banana"],
        "B": [5, 4, 3, 2, 1],
        "cars": ["beetle", "audi", "beetle", "beetle", "beetle"],
    }
)

# embarrassingly parallel execution
# very expressive query language
>>> (df
    .sort("fruits")
    .select([
    "fruits",
    "cars",
    lit("fruits").alias("literal_string_fruits"),
    col("B").filter(col("cars") == "beetle").sum(),
    col("A").filter(col("B") > 2).sum().over("cars").alias("sum_A_by_cars"),       # groups by "cars"
    col("A").sum().over("fruits").alias("sum_A_by_fruits"),                        # groups by "fruits"
    col("A").reverse().over("fruits").flatten().alias("rev_A_by_fruits"),          # groups by "fruits
    col("A").sort_by("B").over("fruits").flatten().alias("sort_A_by_B_by_fruits")  # groups by "fruits"
]))
shape: (5, 8)
âŒâ”€â”€â”€â”€â”€â”€â”€â”€â”€â”€â”¬â”€â”€â”€â”€â”€â”€â”€â”€â”€â”€â”¬â”€â”€â”€â”€â”€â”€â”€â”€â”€â”€â”€â”€â”€â”€â”¬â”€â”€â”€â”€â”€â”¬â”€â”€â”€â”€â”€â”€â”€â”€â”€â”€â”€â”€â”€â”¬â”€â”€â”€â”€â”€â”€â”€â”€â”€â”€â”€â”€â”€â”¬â”€â”€â”€â”€â”€â”€â”€â”€â”€â”€â”€â”€â”€â”¬â”€â”€â”€â”€â”€â”€â”€â”€â”€â”€â”€â”€â”€â”
│ fruits   ┆ cars     ┆ literal_stri ┆ B   ┆ sum_A_by_ca ┆ sum_A_by_fr ┆ rev_A_by_fr ┆ sort_A_by_B │
│ ---      ┆ ---      ┆ ng_fruits    ┆ --- ┆ rs          ┆ uits        ┆ uits        ┆ _by_fruits  │
│ str      ┆ str      ┆ ---          ┆ i64 ┆ ---         ┆ ---         ┆ ---         ┆ ---         │
│          ┆          ┆ str          ┆     ┆ i64         ┆ i64         ┆ i64         ┆ i64         │
âžâ•â•â•â•â•â•â•â•â•â•âªâ•â•â•â•â•â•â•â•â•â•âªâ•â•â•â•â•â•â•â•â•â•â•â•â•â•âªâ•â•â•â•â•âªâ•â•â•â•â•â•â•â•â•â•â•â•â•âªâ•â•â•â•â•â•â•â•â•â•â•â•â•âªâ•â•â•â•â•â•â•â•â•â•â•â•â•âªâ•â•â•â•â•â•â•â•â•â•â•â•â•â•¡
│ "apple"  ┆ "beetle" ┆ "fruits"     ┆ 11  ┆ 4           ┆ 7           ┆ 4           ┆ 4           │
âœâŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâ”¼âŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâ”¼âŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâ”¼âŒâŒâŒâŒâŒâ”¼âŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâ”¼âŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâ”¼âŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâ”¼âŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâ”¤
│ "apple"  ┆ "beetle" ┆ "fruits"     ┆ 11  ┆ 4           ┆ 7           ┆ 3           ┆ 3           │
âœâŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâ”¼âŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâ”¼âŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâ”¼âŒâŒâŒâŒâŒâ”¼âŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâ”¼âŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâ”¼âŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâ”¼âŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâ”¤
│ "banana" ┆ "beetle" ┆ "fruits"     ┆ 11  ┆ 4           ┆ 8           ┆ 5           ┆ 5           │
âœâŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâ”¼âŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâ”¼âŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâ”¼âŒâŒâŒâŒâŒâ”¼âŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâ”¼âŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâ”¼âŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâ”¼âŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâ”¤
│ "banana" ┆ "audi"   ┆ "fruits"     ┆ 11  ┆ 2           ┆ 8           ┆ 2           ┆ 2           │
âœâŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâ”¼âŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâ”¼âŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâ”¼âŒâŒâŒâŒâŒâ”¼âŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâ”¼âŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâ”¼âŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâ”¼âŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâŒâ”¤
│ "banana" ┆ "beetle" ┆ "fruits"     ┆ 11  ┆ 4           ┆ 8           ┆ 1           ┆ 1           │
└──────────┴──────────┴──────────────┴─────┴─────────────┴─────────────┴─────────────┴─────────────┘

Performance 🚀🚀

Polars is very fast, and in fact is one of the best performing solutions available. See the results in h2oai's db-benchmark.

Rust setup

You can take latest release from crates.io, or if you want to use the latest features/ performance improvements point to the master branch of this repo.

polars = {git = "https://github.com/ritchie46/polars", rev = "<optional git tag>" } 

Rust version

Required Rust version >=1.52

Python users read this!

Polars is currently transitioning from py-polars to polars. Some docs may still refer the old name.

Install the latest polars version with: $ pip3 install polars

Documentation

Want to know about all the features Polars support? Read the docs!

Rust

Python

Contribution

Want to contribute? Read our contribution guideline.

[Python] compile py-polars from source

If you want a bleeding edge release or maximal performance you should compile py-polars from source.

This can be done by going through the following steps in sequence:

  1. install the latest rust compiler
  2. $ pip3 install maturin
  3. Choose any of:
  • Very long compile times, fastest binary: $ cd py-polars && maturin develop --rustc-extra-args="-C target-cpu=native" --release
  • Shorter compile times, fast binary: $ cd py-polars && maturin develop --rustc-extra-args="-C codegen-units=16 -C lto=thin -C target-cpu=native" --release

Note that the Rust crate implementing the Python bindings is called py-polars to distinguish from the wrapped Rust crate polars itself. However, both the Python package and the Python module are named polars, so you can pip install polars and import polars (previously, these were called py-polars and pypolars).

Arrow2

Polars has a fully functional arrow2 branch and will ship the python binaries from this branch. Arrow2 is a faster and safer implementation of the arrow spec. Arrow2 also has a more granular code base, helping to reduce the compiler bloat.

Acknowledgements

Development of Polars is proudly powered by

Xomnia

Sponsors

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

polars-0.9.0_beta.1.tar.gz (490.6 kB view details)

Uploaded Source

Built Distributions

polars-0.9.0_beta.1-cp36-abi3-win_amd64.whl (11.0 MB view details)

Uploaded CPython 3.6+Windows x86-64

polars-0.9.0_beta.1-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (10.6 MB view details)

Uploaded CPython 3.6+manylinux: glibc 2.12+ x86-64

polars-0.9.0_beta.1-cp36-abi3-macosx_10_7_x86_64.whl (10.4 MB view details)

Uploaded CPython 3.6+macOS 10.7+ x86-64

File details

Details for the file polars-0.9.0_beta.1.tar.gz.

File metadata

  • Download URL: polars-0.9.0_beta.1.tar.gz
  • Upload date:
  • Size: 490.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/0.11.3

File hashes

Hashes for polars-0.9.0_beta.1.tar.gz
Algorithm Hash digest
SHA256 f766379c300bdab5080986976a48a10f165e92b15a4383f1d2af7f0491566649
MD5 1bae9c33326eb28e37f947d31089f960
BLAKE2b-256 e8da0a522ca46e43eef620774e981bb756bb2fa5864b520915fbb7654dfd31a8

See more details on using hashes here.

File details

Details for the file polars-0.9.0_beta.1-cp36-abi3-win_amd64.whl.

File metadata

File hashes

Hashes for polars-0.9.0_beta.1-cp36-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 aa4e0c43e1fa793bf5ba4838e3e253a1eefe5a7e5453b7796ccce0dde54e9307
MD5 68191f47625c00ba6be3a0e14f4abd4d
BLAKE2b-256 c9206a0c1d40674c58ebe79e9a769c5834ae1e99c28b4dff530c0065202efda7

See more details on using hashes here.

File details

Details for the file polars-0.9.0_beta.1-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for polars-0.9.0_beta.1-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 e19ca6b9808423f26851c9a35ca6906192faf236a3371b3f9b18c749af2789c5
MD5 14bdf6110dbc0eae6918f88016687511
BLAKE2b-256 debc14cf6cc01be7dc363cf33af08e9ceb650a0d433d3725fbd959b609be2cef

See more details on using hashes here.

File details

Details for the file polars-0.9.0_beta.1-cp36-abi3-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for polars-0.9.0_beta.1-cp36-abi3-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 af9a90e9d7a994754dd87946c7a49fc3c4780ac39f5e1dc41838381956029ebc
MD5 502b1d716243eebfba0bc5d2aef7ed92
BLAKE2b-256 ea674ff38eea9bbd1498f608d5adc35465e065a1759b4af1eba22412f4fd73d2

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page