Skip to main content

Python package to analyze the results of pooled CRISPR screens

Project description

poola

Python package for pooled screen analysis

Install

Install from github for the latest development release:

pip install git+git://github.com/gpp-rnd/poola.git#egg=poola

Or install the most recent distribution from PyPi:

PyPI version

pip install poola

How to use

Additional packages required for this tutorial can be install using pip install -r requirements.txt

from poola import core as pool
import pandas as pd
import seaborn as sns
import gpplot
import matplotlib.pyplot as plt

To demonstrate the functionality of this module we'll use read counts from Sanson et al. 2018.

supp_reads = 'https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-018-07901-8/MediaObjects/41467_2018_7901_MOESM4_ESM.xlsx'
read_counts = pd.read_excel(supp_reads,
                            sheet_name = 'A375_orig_tracr raw reads', 
                            header = None,
                            skiprows = 3, 
                            names = ['sgRNA Sequence', 'pDNA', 'A375_RepA', 'A375_RepB'], 
                            engine='openpyxl')
guide_annotations = pd.read_excel(supp_reads,
                                  sheet_name='sgRNA annotations', 
                                  engine='openpyxl')

The input data has three columns with read counts and one column with sgRNA annotations

read_counts.head()
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
sgRNA Sequence pDNA A375_RepA A375_RepB
0 AAAAAAAATCCGGACAATGG 522 729 774
1 AAAAAAAGGATGGTGATCAA 511 1484 1393
2 AAAAAAATGACATTACTGCA 467 375 603
3 AAAAAAATGTCAGTCGAGTG 200 737 506
4 AAAAAACACAAGCAAGACCG 286 672 352
lognorms = pool.lognorm_columns(reads_df=read_counts, columns=['pDNA', 'A375_RepA', 'A375_RepB'])
filtered_lognorms = pool.filter_pdna(lognorm_df=lognorms, pdna_cols=['pDNA'], z_low=-3)
print('Filtered ' + str(lognorms.shape[0] - filtered_lognorms.shape[0]) + ' columns due to low pDNA abundance')
Filtered 576 columns due to low pDNA abundance

Note that the column names for the lognorms remain the same

lognorms.head()
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
sgRNA Sequence pDNA A375_RepA A375_RepB
0 AAAAAAAATCCGGACAATGG 4.192756 3.373924 3.521755
1 AAAAAAAGGATGGTGATCAA 4.163726 4.326828 4.312620
2 AAAAAAATGACATTACTGCA 4.041390 2.540624 3.196767
3 AAAAAAATGTCAGTCGAGTG 2.930437 3.388159 2.973599
4 AAAAAACACAAGCAAGACCG 3.388394 3.268222 2.528233
lfc_df = pool.calculate_lfcs(lognorm_df=filtered_lognorms, ref_col='pDNA', target_cols=['A375_RepA', 'A375_RepB'])

We drop the pDNA column after calculating log-fold changes

lfc_df.head()
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
sgRNA Sequence A375_RepA A375_RepB
0 AAAAAAAATCCGGACAATGG -0.818831 -0.671000
1 AAAAAAAGGATGGTGATCAA 0.163102 0.148894
2 AAAAAAATGACATTACTGCA -1.500766 -0.844622
3 AAAAAAATGTCAGTCGAGTG 0.457721 0.043161
4 AAAAAACACAAGCAAGACCG -0.120172 -0.860161

Since we only have two conditions it's easy to visualize replicates as a point densityplot using gpplot

plt.subplots(figsize=(4,4))
gpplot.point_densityplot(data=lfc_df, x='A375_RepA', y='A375_RepB')
gpplot.add_correlation(data=lfc_df, x='A375_RepA', y='A375_RepB')
sns.despine()

png

Since we see a strong correlation, we'll average the log-fold change of each sgRNA across replicates

avg_replicate_lfc_df = pool.average_replicate_lfcs(lfcs=lfc_df, guide_col='sgRNA Sequence', condition_indices=[0],
                                                   sep='_')

After averaging log-fold changes our dataframe is melted, so the condition column specifies the experimental condition (A375 here) and the n_obs specifies the number of replicates

avg_replicate_lfc_df.head()
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
sgRNA Sequence condition avg_lfc n_obs
0 AAAAAAAATCCGGACAATGG A375 -0.744916 2
1 AAAAAAAGGATGGTGATCAA A375 0.155998 2
2 AAAAAAATGACATTACTGCA A375 -1.172694 2
3 AAAAAAATGTCAGTCGAGTG A375 0.250441 2
4 AAAAAACACAAGCAAGACCG A375 -0.490166 2

It's sometimes helpful to group controls into pseudo-genes so they're easier to compare with target genes. Our annotation file maps from sgRNA sequences to gene symbols

remapped_annotations = pool.group_pseudogenes(annotations=guide_annotations, pseudogene_size=4, 
                                              gene_col='Annotated Gene Symbol', 
                                              control_regex=['NO_CURRENT'])
remapped_annotations.head()
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
sgRNA Sequence Annotated Gene Symbol Annotated Gene ID
0 AAAAAAAATCCGGACAATGG SLC25A24 29957
1 AAAAAAAGGATGGTGATCAA FASTKD3 79072
2 AAAAAAATGACATTACTGCA BCAS2 10286
3 AAAAAAATGTCAGTCGAGTG GPR18 2841
4 AAAAAACACAAGCAAGACCG ZNF470 388566

We provide two methods for scaling log-fold change values to controls:

  1. Z-score from a set of negative controls
  2. Scale scores between a set of negative and positive controls

For both scoring methods, you can input either a regex or a list of genes to define control sets

For our set of negative controls, we'll use nonessential genes

nonessential_genes = (pd.read_table('https://raw.githubusercontent.com/gpp-rnd/genesets/master/human/non-essential-genes-Hart2014.txt',
                                    names=['gene'])
                      .gene)
annot_guide_lfcs = pool.annotate_guide_lfcs(avg_replicate_lfc_df, remapped_annotations, 'Annotated Gene Symbol',
                                            merge_on='sgRNA Sequence', z_score_neg_ctls=True,
                                            z_score_neg_ctl_genes=nonessential_genes)
annot_guide_lfcs.head()
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
sgRNA Sequence condition avg_lfc n_obs Annotated Gene Symbol Annotated Gene ID z_scored_avg_lfc
0 AAAAAAAATCCGGACAATGG A375 -0.744916 2 SLC25A24 29957 -1.651921
1 AAAAAAAGGATGGTGATCAA A375 0.155998 2 FASTKD3 79072 0.166585
2 AAAAAAATGACATTACTGCA A375 -1.172694 2 BCAS2 10286 -2.515396
3 AAAAAAATGTCAGTCGAGTG A375 0.250441 2 GPR18 2841 0.357219
4 AAAAAACACAAGCAAGACCG A375 -0.490166 2 ZNF470 388566 -1.137705

To aggregate scores at the gene level, we specify columns to average, and columns to z-score. From our z-scores we calculate a p-value and FDR using the Benjamini-Hochberg procedure

gene_lfcs = pool.aggregate_gene_lfcs(annot_guide_lfcs, 'Annotated Gene Symbol',
                                     average_cols=['avg_lfc'],
                                     zscore_cols=['z_scored_avg_lfc'])
gene_lfcs.head()
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
condition Annotated Gene Symbol n_guides avg_lfc z_scored_avg_lfc z_scored_avg_lfc_p_value z_scored_avg_lfc_fdr
0 A375 A1BG 3 -0.084621 -0.552711 0.580461 0.872833
1 A375 A1CF 4 0.500314 1.723181 0.084856 0.338055
2 A375 A2M 4 0.288629 0.868604 0.385064 0.759829
3 A375 A2ML1 4 -0.481786 -2.241580 0.024989 0.132164
4 A375 A3GALT2 4 0.059362 -0.056952 0.954583 0.990693

Finally, to evaluate the quality this screen, we'll calculate the ROC-AUC between essential and nonessential genes for each condition

essential_genes = (pd.read_table('https://raw.githubusercontent.com/gpp-rnd/genesets/master/human/essential-genes-Hart2015.txt', 
                                 names=['gene'])
                   .gene)
roc_aucs, roc_df = pool.get_roc_aucs(lfcs=gene_lfcs, tp_genes=essential_genes, fp_genes=nonessential_genes, gene_col='Annotated Gene Symbol',
                                     condition_col='condition', score_col='avg_lfc')
print('ROC-AUC: ' + str(round(roc_aucs['ROC-AUC'].values[0], 3)))
ROC-AUC: 0.976

Note that we can also use this function to calculate roc-aucs at the guide level

annotated_guide_lfcs = lfc_df.merge(guide_annotations, how='inner', on='sgRNA Sequence')
roc_aucs, roc_df = pool.get_roc_aucs(lfcs=annotated_guide_lfcs, tp_genes=essential_genes, fp_genes=nonessential_genes, gene_col='Annotated Gene Symbol',
                                     condition_list=['A375_RepA', 'A375_RepB'])
roc_aucs
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
condition ROC-AUC
0 A375_RepA 0.918505
1 A375_RepB 0.917600

And plot ROC curves from the roc_df

plt.subplots(figsize=(4,4))
sns.lineplot(data=roc_df, x='fpr', y='tpr', hue='condition', ci=None)
gpplot.add_xy_line()
sns.despine()

png

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

poola-0.0.16.tar.gz (20.0 kB view hashes)

Uploaded Source

Built Distribution

poola-0.0.16-py3-none-any.whl (15.3 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page