Skip to main content

Preparation tools for machine learning

Project description

pretools

Python package PyPI PyPI - License Binder

Preparation tools for machine learning.

Examples

from pretools.estimators import *
from sklearn.datasets import load_boston
from sklearn.pipeline import make_pipeline

X, y = load_boston(return_X_y=True)
model = ModifiedCatBoostRegressor(random_state=0, verbose=100)
model = make_pipeline(
    Profiler(),
    Astype(),
    NUniqueThreshold(max_freq=None),
    DropCollinearFeatures(method="spearman", random_state=0),
    ClippedFeatures(),
    ModifiedStandardScaler(),
    ModifiedSelectFromModel(model, random_state=0, threshold=1e-06),
    CombinedFeatures(include_data=True),
    ModifiedSelectFromModel(model, random_state=0, threshold=1e-06),
    model,
)

model.fit(X, y)

Installation

pip install pretools

Testing

python setup.py test

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pretools-0.3.0.tar.gz (13.1 kB view details)

Uploaded Source

Built Distribution

pretools-0.3.0-py3-none-any.whl (11.4 kB view details)

Uploaded Python 3

File details

Details for the file pretools-0.3.0.tar.gz.

File metadata

  • Download URL: pretools-0.3.0.tar.gz
  • Upload date:
  • Size: 13.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.8.1

File hashes

Hashes for pretools-0.3.0.tar.gz
Algorithm Hash digest
SHA256 e0216e9bfc8ba922c39395e27bdd13945bab5decaedb6e06ce584e4f7f54b72b
MD5 17514610ae4bc5c6057a42b499775031
BLAKE2b-256 c66ea5953338dcb1b932c1a1af77853b0e9c5edf8ba6317af99a1681a565c476

See more details on using hashes here.

File details

Details for the file pretools-0.3.0-py3-none-any.whl.

File metadata

  • Download URL: pretools-0.3.0-py3-none-any.whl
  • Upload date:
  • Size: 11.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.8.1

File hashes

Hashes for pretools-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 d5c090dc657017406271200a48737f71ec13c42164bdc20308d0d6ce68cd2876
MD5 1faac7235043dc2cb02be6190291d404
BLAKE2b-256 3fd9908b9f4a87545100b7f8d1ca38a924458caec4333036263c110cd7b376c9

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page