Python bindings for Primer3
Project description
Primer3-py is a Python-abstracted API for the popular Primer3 library. The intention is to provide a simple and reliable interface for automated oligo analysis and design.
Routine oligo analysis is simple:
>>> import primer3 >>> primer3.calcTm('GTAAAACGACGGCCAGT') 49.16808228911765 >>> primer3.calcHairpin('CCCCCATCCGATCAGGGGG') ThermoResult(structure_found=True, tm=34.15, dg=337.09, dh=-36300.00, ds=-118.13, msg=)
… and fast (~1000X faster than traditional subprocess wrappers):
In [1]: import primer3 In [2]: %timeit primer3.calcTm('GTAAAACGACGGCCAGT') 100000 loops, best of 3: 4.74 us per loop In [3]: %timeit primer3.wrappers.calcTm('GTAAAACGACGGCCAGT') 100000 loops, best of 3: 5.78 ms per loop
Primer3-py also includes bindings for the Primer3 primer design engine if you’d prefer to use an established pipeline. The IO parameters mirror those of the original Primer3.
Please note that while we provide bindings, we do not provide support for the Primer3 design engine. Please contact the Primer3 dev team with your questions: http://primer3.sourceforge.net/.
A copy of the Primer3 2.3.7 design parameters manual can be found at: https://git.io/v9xrc
For documentation of the bindings, see https://libnano.github.io/primer3-py
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Filename, size | File type | Python version | Upload date | Hashes |
---|---|---|---|---|
Filename, size primer3_py-0.6.1-cp27-cp27m-macosx_10_6_x86_64.whl (576.0 kB) | File type Wheel | Python version cp27 | Upload date | Hashes View |
Filename, size primer3_py-0.6.1-cp27-cp27m-win_amd64.whl (1.3 MB) | File type Wheel | Python version cp27 | Upload date | Hashes View |
Filename, size primer3_py-0.6.1-cp35-cp35m-macosx_10_9_x86_64.whl (566.0 kB) | File type Wheel | Python version cp35 | Upload date | Hashes View |
Filename, size primer3_py-0.6.1-cp35-cp35m-win_amd64.whl (1.2 MB) | File type Wheel | Python version cp35 | Upload date | Hashes View |
Filename, size primer3_py-0.6.1-cp36-cp36m-macosx_10_7_x86_64.whl (579.7 kB) | File type Wheel | Python version cp36 | Upload date | Hashes View |
Filename, size primer3_py-0.6.1-cp36-cp36m-win_amd64.whl (1.2 MB) | File type Wheel | Python version cp36 | Upload date | Hashes View |
Filename, size primer3_py-0.6.1-cp37-cp37m-macosx_10_9_x86_64.whl (567.4 kB) | File type Wheel | Python version cp37 | Upload date | Hashes View |
Filename, size primer3_py-0.6.1-cp37-cp37m-win_amd64.whl (1.2 MB) | File type Wheel | Python version cp37 | Upload date | Hashes View |
Filename, size primer3_py-0.6.1-cp38-cp38-macosx_10_9_x86_64.whl (569.8 kB) | File type Wheel | Python version cp38 | Upload date | Hashes View |
Filename, size primer3_py-0.6.1-cp38-cp38-win_amd64.whl (1.2 MB) | File type Wheel | Python version cp38 | Upload date | Hashes View |
Filename, size primer3-py-0.6.1.tar.gz (397.4 kB) | File type Source | Python version None | Upload date | Hashes View |
Hashes for primer3_py-0.6.1-cp27-cp27m-macosx_10_6_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | b45c96632ffd2d573584f08c335ccae0007a6f1f06337fec3b68fd856f00f4f7 |
|
MD5 | 811ca93fc9d8bdbf925258c5183908d3 |
|
BLAKE2-256 | e7e41c9e8e9c3f919769430762bc1e96e93457e18605a9c40fcfabb187385f6a |
Hashes for primer3_py-0.6.1-cp27-cp27m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 44020e414f77420028b3d8532077972d71d7f9a5f5114b192afa2010971c0057 |
|
MD5 | 0e8a730b1b5696974fd269ce471219ec |
|
BLAKE2-256 | c696e3f6d585c148a9b957d931a2121850da82a61e13d3b985909a05b5e7b30f |
Hashes for primer3_py-0.6.1-cp35-cp35m-macosx_10_9_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | e44e068ca4f03c7df1dea0de2582c9d1fb83082d6dab4908d12fd680b0801bde |
|
MD5 | 60102131d8e135316d6d83019985bcbf |
|
BLAKE2-256 | 0fdee8843fb49c77bac9301a5241bab9476b0312afec4c92050c459f874221fc |
Hashes for primer3_py-0.6.1-cp35-cp35m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | c31ff57ef835d538b44d9c7f8a268d0023b51ead2c4fef65936029e3c0cd5f38 |
|
MD5 | 206885f209b9506388805b165d6d56f1 |
|
BLAKE2-256 | b01f1c42aaa225eaab96124c58881e261dac0ad4af8dca13c505d94b8641ce73 |
Hashes for primer3_py-0.6.1-cp36-cp36m-macosx_10_7_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | e155c76aaa42ea8dbb95629371f6fb2068da660bd8d934fa49dba50e9294963c |
|
MD5 | 32bb3031829729c88b58f9511f0932ea |
|
BLAKE2-256 | b7a4e750f547199c09cdc9a968b211dd6e1c71233a6a8a2a71822f343d9ab728 |
Hashes for primer3_py-0.6.1-cp36-cp36m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | f1058150c6aa0b6a1c547c3437ebcac8d68130974b71a8635d79d992f8b25a29 |
|
MD5 | 82042e65855f2a0b093d8f63eef1b8a4 |
|
BLAKE2-256 | 6ca8deb539685599961df911095f85500fa731a5c7c22e865dfa6e6704a041b2 |
Hashes for primer3_py-0.6.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | faa40b5034e474e8af3d5cebed2f91684eb144b2c25f534795b2e6ed2eb6ef40 |
|
MD5 | 0ac7e55698e236cd12ef5b8269f0daa7 |
|
BLAKE2-256 | e756c41c6b2b5269d99f17eaa2c16488d3e8086c1a3aea090b16b7881437929a |
Hashes for primer3_py-0.6.1-cp37-cp37m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0cc93abc0406e2c095c338bbdeaab001335748b91310e14b0148975aed45b338 |
|
MD5 | ec42ddfec9fb3b7a34c40b45da6c3e0e |
|
BLAKE2-256 | a750396e52016531bcd68bc5e2f68f9d9950957f53ba567df9903ce6a4f91609 |
Hashes for primer3_py-0.6.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4bdec6b5a3b39b5715eef968ecf47e419fea014080cca20e8f2ed6a97a7ca076 |
|
MD5 | 69c3a41e32a52fe0c91f6690d606dfb1 |
|
BLAKE2-256 | c2ec3f92c44bee5a0f44781e9ea2a887a5cc7c359b239122d37e1f4688fb06ff |
Hashes for primer3_py-0.6.1-cp38-cp38-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | d0076e42aa3d4c05adcc26bbea4635be0d7ce3b53e289b83326077d90e6659d6 |
|
MD5 | 1cac72f37af974541a82899af757e2d5 |
|
BLAKE2-256 | a1cc15130d129da6a50ba0a2be5174556fd750db0d245006899d798f993d740e |