A package to implement and extend the methods desribed in 'Omnidirectional Transfer for Quasilinear Lifelong Learning'
Project description
ProgLearn
ProgLearn
(Progressive Learning) is a package for exploring and using progressive learning algorithms developed by the neurodata group.
- Installation Guide: http://proglearn.neurodata.io/install.html
- Documentation: http://proglearn.neurodata.io
- Tutorials: http://proglearn.neurodata.io/tutorials.html
- Source Code: http://proglearn.neurodata.io/reference/index.html
- Issues: https://github.com/neurodata/proglearn/issues
- Contribution Guide: http://proglearn.neurodata.io/contributing.html
Some system/package requirements:
- Python: 3.6+
- OS: All major platforms (Linux, macOS, Windows)
- Dependencies: tensorflow, scikit-learn, scipy, numpy, joblib
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
proglearn-0.0.6.tar.gz
(20.8 kB
view details)
Built Distribution
proglearn-0.0.6-py3-none-any.whl
(27.2 kB
view details)
File details
Details for the file proglearn-0.0.6.tar.gz
.
File metadata
- Download URL: proglearn-0.0.6.tar.gz
- Upload date:
- Size: 20.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
3c89cd9f0f26abb862eed8e5efd166a8d6a59bccce6f76d6fb91dfdda9ddaf79
|
|
MD5 |
af37b6539045f5a765d3f558fca0a18e
|
|
BLAKE2b-256 |
d9681cc53a76ee8d2c29139fd0555383cfb5f19a9b44eff7fddeb6a2dec107bd
|
File details
Details for the file proglearn-0.0.6-py3-none-any.whl
.
File metadata
- Download URL: proglearn-0.0.6-py3-none-any.whl
- Upload date:
- Size: 27.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
d36ffbea6e443dd4cd1d6d37fbcd1213e3411594a7ca2bccfe815847042642f4
|
|
MD5 |
964f83ec96ed4e3740809eb0a473944b
|
|
BLAKE2b-256 |
2d8e42c8e5486637d45a586f81b66e60ef3272adb78f34197968db33eee1b105
|