Skip to main content

Package defining mathematical single-variable polynomials.

Project description

Python package defining single-variable polynomials and operations with them

PyPI version Downloads PyPI pyversions PyPI license

Unit Tests Code Documentation Style CodeFactor codecov

Installation

pip install py-polynomial

Documentation

Click here for code-derived documentation and help

Quick examples

Flexible initialization

>>> from polynomial import Polynomial

>>> a = Polynomial(1, 2, 3, 4)
>>> str(a)
x^3 + 2x^2 + 3x + 4

>>> b = Polynomial([4 - x for x in range(4)])
>>> str(b)
4x^3 + 3x^2 + 2x + 1

First derivative

>>> b.derivative
Polynomial(12, 6, 2)

>>> str(b.derivative)
12x^2 + 6x + 2

Second or higher derivative

>>> str(b.nth_derivative(2))
24x + 6

Addition

>>> str(a + b)
5x^3 + 5x^2 + 5x + 5

Calculating value for a given x

>>> (a + b).calculate(5)
780

>>> а(2)  #  equivalent to a.calculate(2)
26

Multiplication

>>> p = Polynomial(1, 2) * Polynomial(1, 2)
>>> p
Polynomial(1, 4, 4)

Accessing coefficient by degree

>>> p[0] = -4
>>> p
Polynomial(1, 4, -4)

Slicing

>>> p[1:] = [4, -1]
>>> p
Polynomial(-1, 4, -4)

Accessing coefficients by name convention

>>> (p.a, p.b, p.c)
(-1, 4, -4)

>>> p.a, p.c = 1, 4
>>> (p.A, p.B, p.C)
(1, 4, 4)

Division and remainder

>>> q, remainder = divmod(p, Polynomial(1, 2))
>>> q
Polynomial(1.0, 2.0)
>>> remainder
Polynomial()

>>> p // Polynomial(1, 2)
Polynomial(1.0, 2.0)

>>> P(1, 2, 3) % Polynomial(1, 2)
Polynomial(3)

Check whether it contains given terms

>>> Polynomial(2, 1) in Polynomial(4, 3, 2, 1)
True

Definite integral

>>> Polynomial(3, 2, 1).integral(0, 1)
3

Misc

>>> str(Polynomial("abc"))
ax^2 + bx + c

Roots and discriminants

>>> from polynomial import QuadraticTrinomial, Monomial
>>> y = QuadraticTrinomial(1, -2, 1)
>>> str(y)
x^2 - 2x + 1

>>> y.discriminant
0

>>> y.real_roots
(1, 1)

>>> y.real_factors
(1, Polynomial(1, -1), Polynomial(1, -1))

>>> str(Monomial(5, 3))
5x^3

>>> y += Monomial(9, 2)
>>> y
Polynomial(10, -2, 1)

>>> str(y)
10x^2 - 2x + 1

>>> (y.a, y.b, y.c)
(10, -2, 1)

>>> (y.A, y.B, y.C)
(10, -2, 1)

>>> y.complex_roots
((0.1 + 0.3j), (0.1 - 0.3j))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

py-polynomial-0.6.2.tar.gz (13.9 kB view hashes)

Uploaded Source

Built Distribution

py_polynomial-0.6.2-py3-none-any.whl (13.8 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page