Skip to main content

Circular visualization in Python

Project description

pyCirclize: Circular visualization in Python

Python3 OS License Latest PyPI version conda-forge CI

Table of contents

Overview

pyCirclize is a circular visualization python package implemented based on matplotlib. This package is developed for the purpose of easily and beautifully plotting circular figure such as Circos Plot and Chord Diagram in Python. In addition, useful genome and phylogenetic tree visualization methods for the bioinformatics field are also implemented. pyCirclize was inspired by circlize and pyCircos. More detailed documentation is available here.

pyCirclize_gallery.png
Fig.1 pyCirclize example plot gallery

Installation

Python 3.10 or later is required for installation.

Install PyPI package:

pip install pycirclize

Install conda-forge package:

conda install -c conda-forge pycirclize

API Usage

API usage is described in each of the following sections in the document.

Code Example

1. Circos Plot

from pycirclize import Circos
import numpy as np
np.random.seed(0)

# Initialize Circos sectors
sectors = {"A": 10, "B": 15, "C": 12, "D": 20, "E": 15}
circos = Circos(sectors, space=5)

for sector in circos.sectors:
    # Plot sector name
    sector.text(f"Sector: {sector.name}", r=110, size=15)
    # Create x positions & random y values
    x = np.arange(sector.start, sector.end) + 0.5
    y = np.random.randint(0, 100, len(x))
    # Plot lines
    track1 = sector.add_track((80, 100), r_pad_ratio=0.1)
    track1.xticks_by_interval(interval=1)
    track1.axis()
    track1.line(x, y)
    # Plot points 
    track2 = sector.add_track((55, 75), r_pad_ratio=0.1)
    track2.axis()
    track2.scatter(x, y)
    # Plot bars
    track3 = sector.add_track((30, 50), r_pad_ratio=0.1)
    track3.axis()
    track3.bar(x, y)

# Plot links 
circos.link(("A", 0, 3), ("B", 15, 12))
circos.link(("B", 0, 3), ("C", 7, 11), color="skyblue")
circos.link(("C", 2, 5), ("E", 15, 12), color="chocolate", direction=1)
circos.link(("D", 3, 5), ("D", 18, 15), color="lime", ec="black", lw=0.5, hatch="//", direction=2)
circos.link(("D", 8, 10), ("E", 2, 8), color="violet", ec="red", lw=1.0, ls="dashed")

circos.savefig("example01.png")

example01.png

2. Circos Plot (Genomics)

from pycirclize import Circos
from pycirclize.utils import fetch_genbank_by_accid
from pycirclize.parser import Genbank

# Download `NC_002483` E.coli plasmid genbank
gbk_fetch_data = fetch_genbank_by_accid("NC_002483")
gbk = Genbank(gbk_fetch_data)

# Initialize Circos instance with genome size
sectors = gbk.get_seqid2size()
space = 0 if len(sectors) == 1 else 2
circos = Circos(sectors, space=space)
circos.text(f"Escherichia coli K-12 plasmid F\n\n{gbk.name}", size=14)

seqid2features = gbk.get_seqid2features(feature_type="CDS")
for sector in circos.sectors:
    # Setup track for features plot
    f_cds_track = sector.add_track((95, 100))
    f_cds_track.axis(fc="lightgrey", ec="none", alpha=0.5)
    r_cds_track = sector.add_track((90, 95))
    r_cds_track.axis(fc="lightgrey", ec="none", alpha=0.5)
    # Plot forward/reverse strand CDS
    features = seqid2features[sector.name]
    for feature in features:
        if feature.location.strand == 1:
            f_cds_track.genomic_features(feature, plotstyle="arrow", fc="salmon", lw=0.5)
        else:
            r_cds_track.genomic_features(feature, plotstyle="arrow", fc="skyblue", lw=0.5)

    # Plot 'gene' qualifier label if exists
    labels, label_pos_list = [], []
    for feature in features:
        start = int(feature.location.start)
        end = int(feature.location.end)
        label_pos = (start + end) / 2
        gene_name = feature.qualifiers.get("gene", [None])[0]
        if gene_name is not None:
            labels.append(gene_name)
            label_pos_list.append(label_pos)
            f_cds_track.annotate(label_pos, gene_name, label_size=6)

    # Plot xticks (interval = 10 Kb)
    r_cds_track.xticks_by_interval(
        10000, outer=False, label_formatter=lambda v: f"{v/1000:.1f} Kb"
    )

circos.savefig("example02.png")

example02.png

3. Chord Diagram

from pycirclize import Circos
import pandas as pd

# Create matrix dataframe (3 x 6)
row_names = ["F1", "F2", "F3"]
col_names = ["T1", "T2", "T3", "T4", "T5", "T6"]
matrix_data = [
    [10, 16, 7, 7, 10, 8],
    [4, 9, 10, 12, 12, 7],
    [17, 13, 7, 4, 20, 4],
]
matrix_df = pd.DataFrame(matrix_data, index=row_names, columns=col_names)

# Initialize Circos instance for chord diagram plot
circos = Circos.chord_diagram(
    matrix_df,
    space=5,
    cmap="tab10",
    label_kws=dict(size=12),
    link_kws=dict(ec="black", lw=0.5, direction=1),
)

circos.savefig("example03.png")

example03.png

4. Phylogenetic Tree

from pycirclize import Circos
from pycirclize.utils import load_example_tree_file, ColorCycler
from matplotlib.lines import Line2D

# Initialize Circos from phylogenetic tree
tree_file = load_example_tree_file("large_example.nwk")
circos, tv = Circos.initialize_from_tree(
    tree_file,
    r_lim=(30, 100),
    leaf_label_size=5,
    line_kws=dict(color="lightgrey", lw=1.0),
)

# Define group-species dict for tree annotation
# In this example, set minimum species list to specify group's MRCA node
group_name2species_list = dict(
    Monotremata=["Tachyglossus_aculeatus", "Ornithorhynchus_anatinus"],
    Marsupialia=["Monodelphis_domestica", "Vombatus_ursinus"],
    Xenarthra=["Choloepus_didactylus", "Dasypus_novemcinctus"],
    Afrotheria=["Trichechus_manatus", "Chrysochloris_asiatica"],
    Euarchontes=["Galeopterus_variegatus", "Theropithecus_gelada"],
    Glires=["Oryctolagus_cuniculus", "Microtus_oregoni"],
    Laurasiatheria=["Talpa_occidentalis", "Mirounga_leonina"],
)

# Set tree line color & label color
ColorCycler.set_cmap("tab10")
group_name2color = {name: ColorCycler() for name in group_name2species_list.keys()}
for group_name, species_list in group_name2species_list.items():
    color = group_name2color[group_name]
    tv.set_node_line_props(species_list, color=color, apply_label_color=True)

# Plot figure & set legend on center
fig = circos.plotfig()
_ = circos.ax.legend(
    handles=[Line2D([], [], label=n, color=c) for n, c in group_name2color.items()],
    labelcolor=group_name2color.values(),
    fontsize=6,
    loc="center",
    bbox_to_anchor=(0.5, 0.5),
)
fig.savefig("example04.png")

example04.png

5. Radar Chart

from pycirclize import Circos
import pandas as pd

# Create RPG jobs parameter dataframe (3 jobs, 7 parameters)
df = pd.DataFrame(
    data=[
        [80, 80, 80, 80, 80, 80, 80],
        [90, 20, 95, 95, 30, 30, 80],
        [60, 90, 20, 20, 100, 90, 50],
    ],
    index=["Hero", "Warrior", "Wizard"],
    columns=["HP", "MP", "ATK", "DEF", "SP.ATK", "SP.DEF", "SPD"],
)

# Initialize Circos instance for radar chart plot
circos = Circos.radar_chart(
    df,
    vmax=100,
    marker_size=6,
    grid_interval_ratio=0.2,
)

# Plot figure & set legend on upper right
fig = circos.plotfig()
_ = circos.ax.legend(loc="upper right", fontsize=10)
fig.savefig("example05.png")

example05.png

Tooltip Option

pyCirclize supports tooltip display in jupyter using ipympl. To enable tooltip, install pycirclize with ipympl and call circos.plotfig(tooltip=True) method. Tooltip option is tested on jupyter notebooks in VScode and JupyterLab.

pip install pycirclize[tooltip]
# or
conda install -c conda-forge pycirclize ipympl

[!WARNING] Interactive tooltip plots require live python kernel. Be aware that tooltips are not permanently enabled in the notebook after plotting.

pyCirclize_tooltip.gif

Star History

Star History Chart

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pycirclize-1.10.1.tar.gz (20.0 MB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

pycirclize-1.10.1-py3-none-any.whl (83.5 kB view details)

Uploaded Python 3

File details

Details for the file pycirclize-1.10.1.tar.gz.

File metadata

  • Download URL: pycirclize-1.10.1.tar.gz
  • Upload date:
  • Size: 20.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: uv/0.8.22

File hashes

Hashes for pycirclize-1.10.1.tar.gz
Algorithm Hash digest
SHA256 c67c0bcae01b0c37a07c12f0436540f72c3f1068bfc964f388266ec92812b983
MD5 24c59c5a31cba0b60f252c7b4576d9d7
BLAKE2b-256 9f07500623e3db04a4a64d7cf5ab946e5e5e860c198900650a8ea05e1d870d0a

See more details on using hashes here.

File details

Details for the file pycirclize-1.10.1-py3-none-any.whl.

File metadata

File hashes

Hashes for pycirclize-1.10.1-py3-none-any.whl
Algorithm Hash digest
SHA256 fc571b0223195b651edd22011963628bddd92861a4053526b31035bb3347f43e
MD5 58fef9910389e2c3a7a098671960e012
BLAKE2b-256 35efa0090b20af352b9e8ca7b5ccef81940df63ba15cf5c66baf5c6145620537

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page