Skip to main content

PySQL is a Python library for interacting with SQL Server databases. It provides a simplified methodes for common database operations.

Project description

PySQL

PySQL is a Python library for interacting with SQL Server databases. It provides a simplified interface for common database operations.

Sublime's custom image


## Installation

pySQL requires the following packages:

  • pandas
  • numpy
  • sqlalchemy==1.4.32
  • pyodbc
pip install pandas numpy sqlalchemy==1.4.32 pyodbc

Usage

Import PySQL and Table_analyzer:

from pySqlServer import PySQL, Table_analyzer


Table_analyzer usage:

A helper class for analyzing Pandas DataFrames to determine optimal SQL datatypes.

df = pd.read_csv('test.csv')
TA = Table_analyzer()
dtype_dict = TA.analyze(df,texts_buffer=0.2)
  • for texts_buffer > 1 : N in nvarchar(N) sets to len_max_length + texts_buffer
  • for 0 < texts_buffer < 1 : N in nvarchar(N) sets to len_max_length + texts_buffer*len_max_length (extra percentage)


PySQL usage:

  • Create a connection
pysql = PySQL()
pysql.create_connection(server='host_ip', database='mydb', username='myuser', password='mypassword')

your user must have 'db_datareader', 'db_datawriter', 'db_ddlAdmin' permissions to module works perfectly


  • at first use (for every tables) you must call create_dtypes()
dtype_dict = {'col1':sql.sqltypes.INTEGER , 'col2':sql.sqltypes.NVARCHAR(100)} # it's suggested to use Table_analyzer to calculate optimal dtype_dict
# dtype_dict = TA.analyze(df,texts_buffer=0.2) 
pysql.create_dtypes(dtype_dict=dtype_dict, table_name='Test_table', schema='Test_schema')

  • at all next usages you must call load_dtypes and next you can use to_sql method to send data
pysql.load_dtypes(table_name='Test_table', schema='Test_schema')    # created before
pysql.to_sql(df,'Test_table', schema='Test_schema', if_exists='append', text_cutter=True, date_normalizer=True, method='multi', verbos=True)
  • you can use primary_key='column_name' to set tables primary_key
  • in next usages it's not allowed to use this
  • 'text_cutter' trys to cut new text if those length was taller than column capacity
  • 'date_normalizer' trys to make date format colums suitable for sql server
  • method='multi' for insert multi row in ine query
  • verbos=True --> show progress bar for your data transfer (default:False)
  • and there is some read data methods in order to read data from your database (returns pandas dataframe)
pysql.tables_list(schema=None)
pysql.read_sql_table(table_name, schema=None)
pysql.read_sql_query(query='SELECT * FROM TABLE_NAME')

  • logger is a common method to use ( it logs datetime and process_id and actor_user in order to make your actions trackable )

every to_sql calls can join with logs with 'process_id' column , so you can find who and when it's started to store data and how long takes it process

pysql.logger('create_connection', 'success', 'connected')


  • auto log system logs all your method calls like bellow sample:

auto_log sample:

function state log connection_user process_id datetime
create_connection success connected pysql_user -1 2023-08-12 16:04:22.000
read_sql_table start success pysql_user 0 2023-08-12 16:04:22.000
read_sql_table end success pysql_user 0 2023-08-12 16:04:23.000
create_dtypes start success pysql_user 1 2023-08-12 16:04:23.000
create_dtypes end success pysql_user 1 2023-08-12 16:04:23.000
load_dtypes start success pysql_user 2 2023-08-12 16:04:24.000
load_dtypes end success pysql_user 2 2023-08-12 16:04:24.000
to_sql start success pysql_user 3 2023-08-12 16:04:24.000
to_sql end success pysql_user 3 2023-08-12 16:04:32.000

data to_sql sample:

user_id id created_at lang favorite_count quote_count reply_count retweet_count views_count bookmark_count
*****17323920629770 1647162******634625 2023-04-15 08:57:34.000 en 2 0 0 0 177 1
*****0417 1647153******613570 2023-04-15 08:23:18.000 en 1 0 1 0 12 0
*****49585152565249 1682090******974593 2023-07-20 18:08:18.000 en 642 83 65 213 1749178 8
*****87375859568642 1647152******957248 2023-04-15 08:18:00.000 ar 22 8 0 0 7 0
*****0013028323329 1647127******033537 2023-04-15 06:40:00.000 en 2 0 1 0 84 2

dtypes table sample:

table schema dtypes_str proccess_id
T1 Twitter {'user_id': 'types.BIGINT()', ... , 'bookmark_count': 'types.INTEGER()'} 1
T2 Twitter {'user_profile_banner_url': 'types.NVARCHAR(88)',..., 'user_description_urls': 'types.NVARCHAR(443)'} 8
T3 Twitter {'in_reply_to_status_id_str': 'types.BIGINT()',..., 'is_quote': 'types.BOOLEAN()'} 11

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pySqlServer-2.9.8.tar.gz (10.4 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

pySqlServer-2.9.8-py3-none-any.whl (10.8 kB view details)

Uploaded Python 3

File details

Details for the file pySqlServer-2.9.8.tar.gz.

File metadata

  • Download URL: pySqlServer-2.9.8.tar.gz
  • Upload date:
  • Size: 10.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for pySqlServer-2.9.8.tar.gz
Algorithm Hash digest
SHA256 2671741ee9a19f7f174825b9cdf5568fb914d14e9a6795b4a1ccdd1a505e6f90
MD5 ae0dc812bcb4b5e47d42532925f69c05
BLAKE2b-256 1f6670195cf01eec2ddbdb25edf9f9f074d26fe3f3102433911ab8551f4cf180

See more details on using hashes here.

File details

Details for the file pySqlServer-2.9.8-py3-none-any.whl.

File metadata

  • Download URL: pySqlServer-2.9.8-py3-none-any.whl
  • Upload date:
  • Size: 10.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for pySqlServer-2.9.8-py3-none-any.whl
Algorithm Hash digest
SHA256 cf0a01456fe245d94e5601b0f8898259cff34c3029da4b316e9eecf60264a008
MD5 ea63eef7e333c814654d0cbe4928527b
BLAKE2b-256 abec3ff5c0fa1b42e6be3593118fdbf3785a99d628db88fd7e3a65857a5ce4a7

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page