Skip to main content

PyAMG: Algebraic Multigrid Solvers in Python

Project description

ci lint PyPI - Version PyPI - Python Version Codecov joss

Installation

PyAMG requires numpy and scipy

pip install pyamg

or from source:

pip install .

(python setup.py install will no longer work)

or with conda (see details below)

conda config --add channels conda-forge
conda install pyamg

Introduction

PyAMG is a library of Algebraic Multigrid (AMG) solvers with a convenient Python interface.

PyAMG is currently developed and maintained by Luke Olson, Jacob Schroder, and Ben Southworth. The organization of the project can be found in organization.md and examples of use can be found in pyamg-examples.

Acknowledgements: PyAMG was created by Nathan Bell, Luke Olson, and Jacob Schroder. Portions of the project were partially supported by the NSF under award DMS-0612448.

Citing

If you use PyAMG in your work, please consider using the following citation:

@article{pyamg2023,
  author    = {Nathan Bell and Luke N. Olson and Jacob Schroder and Ben Southworth},
  title     = {{PyAMG}: Algebraic Multigrid Solvers in Python},
  journal   = {Journal of Open Source Software},
  year      = {2023},
  publisher = {The Open Journal},
  volume    = {8},
  number    = {87},
  pages     = {5495},
  doi       = {10.21105/joss.05495},
  url       = {https://doi.org/10.21105/joss.05495},
}

Getting Help

  • For documentation see http://pyamg.readthedocs.io/en/latest/.

  • Create an issue.

  • Look at the Tutorial or the examples (for instance the 0_start_here example).

  • Run the unit tests (pip install pytest):

    • With PyAMG installed and from a non-source directory:
    import pyamg
    pyamg.test()
    
    • From the PyAMG source directory and installed (e.g. with pip install -e .):
    pytest .
    

What is AMG?

AMG is a multilevel technique for solving large-scale linear systems with optimal or near-optimal efficiency. Unlike geometric multigrid, AMG requires little or no geometric information about the underlying problem and develops a sequence of coarser grids directly from the input matrix. This feature is especially important for problems discretized on unstructured meshes and irregular grids.

PyAMG Features

PyAMG features implementations of:

  • Ruge-Stuben (RS) or Classical AMG
  • AMG based on Smoothed Aggregation (SA)

and experimental support for:

  • Adaptive Smoothed Aggregation (αSA)
  • Compatible Relaxation (CR)

The predominant portion of PyAMG is written in Python with a smaller amount of supporting C++ code for performance critical operations.

Example Usage

PyAMG is easy to use! The following code constructs a two-dimensional Poisson problem and solves the resulting linear system with Classical AMG.

import pyamg
import numpy as np
A = pyamg.gallery.poisson((500,500), format='csr')  # 2D Poisson problem on 500x500 grid
ml = pyamg.ruge_stuben_solver(A)                    # construct the multigrid hierarchy
print(ml)                                           # print hierarchy information
b = np.random.rand(A.shape[0])                      # pick a random right hand side
x = ml.solve(b, tol=1e-10)                          # solve Ax=b to a tolerance of 1e-10
print("residual: ", np.linalg.norm(b-A*x))          # compute norm of residual vector

Program output:

multilevel_solver
Number of Levels:     9
Operator Complexity:  2.199
Grid Complexity:      1.667
Coarse Solver:        'pinv2'
  level   unknowns     nonzeros
    0       250000      1248000 [45.47%]
    1       125000      1121002 [40.84%]
    2        31252       280662 [10.23%]
    3         7825        70657 [ 2.57%]
    4         1937        17971 [ 0.65%]
    5          483         4725 [ 0.17%]
    6          124         1352 [ 0.05%]
    7           29          293 [ 0.01%]
    8            7           41 [ 0.00%]

residual:  1.24748994988e-08

Conda

More information can be found at conda-forge/pyamg-feedstock.

Linux: Circle CI

OSX: TravisCI

Windows: AppVeyor

Version: Anaconda-Server Badge

Downloads: Anaconda-Server Badge

Installing pyamg from the conda-forge channel can be achieved by adding conda-forge to your channels with:

conda config --add channels conda-forge

Once the conda-forge channel has been enabled, pyamg can be installed with:

conda install pyamg

It is possible to list all of the versions of pyamg available on your platform with:

conda search pyamg --channel conda-forge

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyamg-5.2.1.tar.gz (4.1 MB view details)

Uploaded Source

Built Distributions

pyamg-5.2.1-cp313-cp313-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.13Windows x86-64

pyamg-5.2.1-cp313-cp313-win32.whl (1.5 MB view details)

Uploaded CPython 3.13Windows x86

pyamg-5.2.1-cp313-cp313-musllinux_1_2_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ x86-64

pyamg-5.2.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ x86-64

pyamg-5.2.1-cp313-cp313-macosx_11_0_arm64.whl (1.7 MB view details)

Uploaded CPython 3.13macOS 11.0+ ARM64

pyamg-5.2.1-cp313-cp313-macosx_10_13_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.13macOS 10.13+ x86-64

pyamg-5.2.1-cp312-cp312-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.12Windows x86-64

pyamg-5.2.1-cp312-cp312-win32.whl (1.5 MB view details)

Uploaded CPython 3.12Windows x86

pyamg-5.2.1-cp312-cp312-musllinux_1_2_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ x86-64

pyamg-5.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

pyamg-5.2.1-cp312-cp312-macosx_11_0_arm64.whl (1.7 MB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

pyamg-5.2.1-cp312-cp312-macosx_10_13_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.12macOS 10.13+ x86-64

pyamg-5.2.1-cp312-cp312-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.12macOS 10.9+ x86-64

pyamg-5.2.1-cp311-cp311-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.11Windows x86-64

pyamg-5.2.1-cp311-cp311-win32.whl (1.5 MB view details)

Uploaded CPython 3.11Windows x86

pyamg-5.2.1-cp311-cp311-musllinux_1_2_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ x86-64

pyamg-5.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

pyamg-5.2.1-cp311-cp311-macosx_11_0_arm64.whl (1.7 MB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

pyamg-5.2.1-cp311-cp311-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

pyamg-5.2.1-cp310-cp310-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.10Windows x86-64

pyamg-5.2.1-cp310-cp310-win32.whl (1.4 MB view details)

Uploaded CPython 3.10Windows x86

pyamg-5.2.1-cp310-cp310-musllinux_1_2_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.10musllinux: musl 1.2+ x86-64

pyamg-5.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

pyamg-5.2.1-cp310-cp310-macosx_11_0_arm64.whl (1.7 MB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

pyamg-5.2.1-cp310-cp310-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

pyamg-5.2.1-cp39-cp39-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.9Windows x86-64

pyamg-5.2.1-cp39-cp39-win32.whl (1.5 MB view details)

Uploaded CPython 3.9Windows x86

pyamg-5.2.1-cp39-cp39-musllinux_1_2_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.9musllinux: musl 1.2+ x86-64

pyamg-5.2.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

pyamg-5.2.1-cp39-cp39-macosx_11_0_arm64.whl (1.7 MB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

pyamg-5.2.1-cp39-cp39-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

File details

Details for the file pyamg-5.2.1.tar.gz.

File metadata

  • Download URL: pyamg-5.2.1.tar.gz
  • Upload date:
  • Size: 4.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for pyamg-5.2.1.tar.gz
Algorithm Hash digest
SHA256 f449d934224e503401ee72cd2eece1a29d893b7abe35f62a44d52ba831198efa
MD5 937ef9d75ae3fc1cec041e9057a65e90
BLAKE2b-256 7210aee094f1ab76d07d7c5c3ff7e4c411d720f0d4461e0fdea74a4393058863

See more details on using hashes here.

File details

Details for the file pyamg-5.2.1-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: pyamg-5.2.1-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.8

File hashes

Hashes for pyamg-5.2.1-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 67cde86f0ea27af10e1f264235a29effcbf31f69099e3a0525c797984b37360c
MD5 1a03d301b50bd67ce71a914b437b23b2
BLAKE2b-256 8c24ed4594af1c6e88495642c161a224a0f5952f3842c60aa1e1c5fcab8ce73e

See more details on using hashes here.

File details

Details for the file pyamg-5.2.1-cp313-cp313-win32.whl.

File metadata

  • Download URL: pyamg-5.2.1-cp313-cp313-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.13, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.8

File hashes

Hashes for pyamg-5.2.1-cp313-cp313-win32.whl
Algorithm Hash digest
SHA256 443dcf8f8912b8815bc7b5c1e3c15ab41021caad18636a94bd863545ac47af08
MD5 ef076f05c4da353f88f3642671521248
BLAKE2b-256 7f30e0b0305eaad3b69660299c2f14730f9402e1e1e7bfad637d8dcbd581d92b

See more details on using hashes here.

File details

Details for the file pyamg-5.2.1-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pyamg-5.2.1-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 3a9901b7c66e6cd6b30342288e0812bf125f6f191586a7c283246a63b27f76eb
MD5 9379181c46a51a29ce5f25d712043952
BLAKE2b-256 a86bbd320b54f3c3c390a784dc2e28e74d0f384e430e8cf30339fc77ab647bd2

See more details on using hashes here.

File details

Details for the file pyamg-5.2.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyamg-5.2.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6999b351ab969c79faacb81faa74c0fa9682feeff3954979212872a3ee40c298
MD5 dc5b33c9cef6b68336b068e43d3b15db
BLAKE2b-256 cda70df731cbfb09e73979a1a032fc7bc5be0eba617d798b998a0f887afe8ade

See more details on using hashes here.

File details

Details for the file pyamg-5.2.1-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyamg-5.2.1-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f859c862fe5123dfd9e8082715628828b7cdd91d8e74e98c8488986a5f2ac7a2
MD5 20ca6cad3deba201981d74a249ccd260
BLAKE2b-256 75efbd7c5d45ce04f9b44e3982a046cd7608a2fd39da3c26b62f4837dccfc1b7

See more details on using hashes here.

File details

Details for the file pyamg-5.2.1-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pyamg-5.2.1-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 5101a56c343093dc4fdec608d9e045591d73915a24c92df1ac28a13449c1b567
MD5 8c50e54ee8fd5ae23e1d6aa0513626fc
BLAKE2b-256 1e135def1aa306fa055f356a77158441c788f8e08319c7a95da1bb1195b4cd8c

See more details on using hashes here.

File details

Details for the file pyamg-5.2.1-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: pyamg-5.2.1-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for pyamg-5.2.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 dac4b0656188cf85e803355aa9065fd2d6d2237fc29bb5e55995331f75e0f616
MD5 51d206a2fe9026799a849150a881832e
BLAKE2b-256 9ef3cb009732b4f467a63f53fb6be99206568c521d1b7c70fa9809457d7138b3

See more details on using hashes here.

File details

Details for the file pyamg-5.2.1-cp312-cp312-win32.whl.

File metadata

  • Download URL: pyamg-5.2.1-cp312-cp312-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for pyamg-5.2.1-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 5ff6202143f0c5fa093b4f99b9de4e6e5195fb7fecaf001a1f6a5a21b1fe329d
MD5 29e7c8a2f22ac484e1199b8aa5c1856e
BLAKE2b-256 e487b4cc37648e728d4bb92a9956f4d81275cab39000f4fead94322e43e4dd9e

See more details on using hashes here.

File details

Details for the file pyamg-5.2.1-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pyamg-5.2.1-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 1eabc5bd1aa21f0911021d17fdbb03d93216bfefaac0a9af357fed1510dd4f65
MD5 73dac7d1b212095273c0e54ccf9bd446
BLAKE2b-256 e4fc58c3efb48e8bc2cfdbb50c501ac15b67260309c4df5a80905e6ccca7397b

See more details on using hashes here.

File details

Details for the file pyamg-5.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyamg-5.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1894898370f818be7999ed6872391bc7de4f8a2a95027754b67bac638f23a480
MD5 ad263bc901aa4acc857dfdf56dc4ca18
BLAKE2b-256 8cf3d2b4f5c265188bf6f540ecd1d5f208bac2931b332613c116cc33da4e4aa8

See more details on using hashes here.

File details

Details for the file pyamg-5.2.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyamg-5.2.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5f1645e50ed8d93d73c7546ca6e77c856dc3ccddf93bf9ded3f97654e600ca1b
MD5 e9a87e07b5911c4db3222b3b41ad46c8
BLAKE2b-256 0a7c30faaa543a3f5da647deb604f0a7c6f70e62ba157b1b0a7ca977a89cc814

See more details on using hashes here.

File details

Details for the file pyamg-5.2.1-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pyamg-5.2.1-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 37ca129a5d1a980bd42fb90466503b37b084babcd9a2eab25da917181335e823
MD5 a4685a557d58214eab8ca28ffd32f89e
BLAKE2b-256 f461ac26c8cd1d9a5ed2b5c9bf6ad42113c8a23f170ab1c098da23850ee0bb2b

See more details on using hashes here.

File details

Details for the file pyamg-5.2.1-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyamg-5.2.1-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 30ae9f374c03897cb257b8eabbf8ceb32007e6df1c0a7ab2a84eb1ed0550087d
MD5 47ecabbb62b6f1a964089a340c36d173
BLAKE2b-256 d65dc603b5e5fe0b871095691fcc6453e6f666b4006475f94220f01fba376178

See more details on using hashes here.

File details

Details for the file pyamg-5.2.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: pyamg-5.2.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for pyamg-5.2.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 487c41ed3c2987b19771854e84415268033a8c3dba681ecac996ddbf1ce4c3be
MD5 63c61a03950339bd843b98e8bf5e40e0
BLAKE2b-256 d2dee7638d7e9cef62e59480f2ac80ae63e31f7537367031dc9d571427a8d1c6

See more details on using hashes here.

File details

Details for the file pyamg-5.2.1-cp311-cp311-win32.whl.

File metadata

  • Download URL: pyamg-5.2.1-cp311-cp311-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for pyamg-5.2.1-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 0b2762b24ad61d900ac835120158e64ceea6e497a8a3edb69c3b04776ddde329
MD5 6d32c721461fbaa10e20c3417b17a6ae
BLAKE2b-256 2af7c3c708cde09268eec830c29f28d569fcde2e164f28a39aa725f636396f38

See more details on using hashes here.

File details

Details for the file pyamg-5.2.1-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pyamg-5.2.1-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 91a0f8d5f39debbe62ab191c9354fce6c547bd78955961f88cb7ab2ea7a14dc1
MD5 bdc7afd44d119e18569b3ce2c2be9b64
BLAKE2b-256 d8aedf3ef37e5ab6a21bb93e301eccbc9bb201bf247cfb2533c681a5070edf2f

See more details on using hashes here.

File details

Details for the file pyamg-5.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyamg-5.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 679a5904eac3a4880288c8c0e6a29f110a2627ea15a443a4e9d5997c7dc5fab6
MD5 7a0d54c82a3df6439cc30bcdfd3f6d19
BLAKE2b-256 d3e86898b3b791f369605012e896ed903b6626f3bd1208c6a647d7219c070209

See more details on using hashes here.

File details

Details for the file pyamg-5.2.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyamg-5.2.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 75d68fac5a7ddb3fb490efa66a5e47902532770bc357fbf5a5a7be613b8d493d
MD5 ac2fd15d55c3b647f535ac48bad0e66c
BLAKE2b-256 a823fb5e9ae91de2a9d723f1ba6b484e7b4145d0cd15f4953b6f1ce89f39a602

See more details on using hashes here.

File details

Details for the file pyamg-5.2.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyamg-5.2.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 60d02ce8e1190292cf43710dd45403ba0860255392830140da874492b755a498
MD5 28a33725a3efa6cfd9a26d2970bf649d
BLAKE2b-256 ae0f5e725b26add355e52abcc9e2f065a85faaabe77e1b0926568743493230bb

See more details on using hashes here.

File details

Details for the file pyamg-5.2.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pyamg-5.2.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for pyamg-5.2.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 f7cb7d4d43e13d67f5e7ad23ea20fa052cb310a186717e763a16b7c176248868
MD5 656f485bd74a342957309e99bff1dd2b
BLAKE2b-256 2d32de2e9116e4cc313fb5dffd29c687fddd30ef24caec7b618a7e4d8804fc77

See more details on using hashes here.

File details

Details for the file pyamg-5.2.1-cp310-cp310-win32.whl.

File metadata

  • Download URL: pyamg-5.2.1-cp310-cp310-win32.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for pyamg-5.2.1-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 b14476eb193b83c4a2537be245b37919b4b5cc49cf4e85e232ae804b02a8f97c
MD5 5d2ce87baa18016c4ec77049eca9998b
BLAKE2b-256 7e50b2dd5ed70d033e50c0f2f260754c2ca64e67d8aaa3d2fe04cc1e6028ae2b

See more details on using hashes here.

File details

Details for the file pyamg-5.2.1-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pyamg-5.2.1-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 585723f8e78048da5e6f6ae6336aa343b318154f02365a529867c741c49d529b
MD5 1f4340a545c2827f6543f77de0a4f7e1
BLAKE2b-256 34d2bd943fefd7f3a2bbe6f0a0ecf5b8433e85ac3fa53a33f5a6bcbd2c3e0639

See more details on using hashes here.

File details

Details for the file pyamg-5.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyamg-5.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 22ec55aeabb88724a01751150005d1209fb6edb6de9d8cb6e4129294774b8487
MD5 54f7d249668effecec0f59d929c712ad
BLAKE2b-256 7f11d7f8dcc51f28b6b8d65e154b8f8c66217fd942718afe58088b4423501bdc

See more details on using hashes here.

File details

Details for the file pyamg-5.2.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyamg-5.2.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5d45d02e21a63e92b29b108ab4ec111e699367116e8541318304c16f52ffa71a
MD5 ff2f2bb312bbf5b7f34ad825c45dcdf6
BLAKE2b-256 3f188b6512e02cb620e121b75e9291c4ad8c8257cb49cd21b5771f57bd5dc513

See more details on using hashes here.

File details

Details for the file pyamg-5.2.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyamg-5.2.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 486a2b58b53aa6dc606fae5b9f3aebb5dad635a2113cea4f300da16983749716
MD5 d6048b8f86f52019ba0ae2edac30d24f
BLAKE2b-256 71d29e296528ea5ff0bfedf5fdf79851bac99fdd7b3286d355de68cc1c39ba43

See more details on using hashes here.

File details

Details for the file pyamg-5.2.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pyamg-5.2.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for pyamg-5.2.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 0bc04266f177bb92f4468af3d30b06b2925de54107e15b3cfc118a06c96a88cf
MD5 db69347c853d60ee190e4f86762d5392
BLAKE2b-256 f6db8fdfb4b251e5a2c0219f0339a9e749a458fd4cdbfe47d8a62848d17e0e2c

See more details on using hashes here.

File details

Details for the file pyamg-5.2.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: pyamg-5.2.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for pyamg-5.2.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 4b7ee45d5b3f96897146b55d2a1829d3f7c692cafb2bc99396e14e2bf1c645b3
MD5 77bd1e948795518e278a7823ed0898c9
BLAKE2b-256 c90ba95880eddb43003dd7ce4e6080e0946b26eae27d4a04e6093cdab43264b6

See more details on using hashes here.

File details

Details for the file pyamg-5.2.1-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pyamg-5.2.1-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 f297ecd26aa9130ca57c74fe52e40a7590e0f0aef50616b39ce7ab02ebc1a8a9
MD5 f088ed6bb58a6681826e95d18ffff223
BLAKE2b-256 545b99aaae251b54d7fc5338cac33833e7f75ad19f1856af80eb1524f6550c1e

See more details on using hashes here.

File details

Details for the file pyamg-5.2.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyamg-5.2.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 40acf38eb733dd33f054f2b9a6aa3cee1786b7a5420b602787f2d38eca8051ac
MD5 6537f804570cde37d6a1f760038be22b
BLAKE2b-256 deb6411b3de91fb23aebee8082af5c970f8345e06d8357ce1c33464837130770

See more details on using hashes here.

File details

Details for the file pyamg-5.2.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: pyamg-5.2.1-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for pyamg-5.2.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6da02369515d56647fadab8390933d510969ff36b396bf5d11eb6738484ce014
MD5 2bc4163aa7641323d00760d99a4a1031
BLAKE2b-256 1fbb50c6651ba042d2c196afbc1c5911b19293713794010b3b4ab8f85c3f7f77

See more details on using hashes here.

File details

Details for the file pyamg-5.2.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyamg-5.2.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4159c8d13ea0c35d881ef76e14b94fa248e99d60bd9140a7762fcca972f34de7
MD5 0c621a3911fb5e4f67083b65174667e0
BLAKE2b-256 dbb254cf2d888d94a6d60ce2b2fa670f68429e442b625ae6f23f70e58082ca12

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page