Skip to main content

pyfastx is a python module for fast random access to sequences from plain and gzipped FASTA/Q file

Project description

Action Readthedocs Codecov PyPI Language Pyver Wheel Codacy Downloads License Bioconda

Citation: Lianming Du, Qin Liu, Zhenxin Fan, Jie Tang, Xiuyue Zhang, Megan Price, Bisong Yue, Kelei Zhao. Pyfastx: a robust Python package for fast random access to sequences from plain and gzipped FASTA/Q files. Briefings in Bioinformatics, 2021, 22(4):bbaa368.

Introduction

The pyfastx is a lightweight Python C extension that enables users to randomly access to sequences from plain and gzipped FASTA/Q files. This module aims to provide simple APIs for users to extract seqeunce from FASTA and reads from FASTQ by identifier and index number. The pyfastx will build indexes stored in a sqlite3 database file for random access to avoid consuming excessive amount of memory. In addition, the pyfastx can parse standard (sequence is spread into multiple lines with same length) and nonstandard (sequence is spread into one or more lines with different length) FASTA format. This module used kseq.h written by @attractivechaos in klib project to parse plain FASTA/Q file and zran.c written by @pauldmccarthy in project indexed_gzip to index gzipped file for random access.

This project was heavily inspired by @mdshw5’s project pyfaidx and @brentp’s project pyfasta.

Features

  • Single file for the Python extension

  • Lightweight, memory efficient for parsing FASTA/Q file

  • Fast random access to sequences from gzipped FASTA/Q file

  • Read sequences from FASTA file line by line

  • Calculate N50 and L50 of sequences in FASTA file

  • Calculate GC content and nucleotides composition

  • Extract reverse, complement and antisense sequences

  • Excellent compatibility, support for parsing nonstandard FASTA file

  • Support for FASTQ quality score conversion

  • Provide command line interface for splitting FASTA/Q file

Installation

Currently, pyfastx supports Python 3.6, 3.7, 3.8, 3.9, 3.10, 3.11. Make sure you have installed both pip and Python before starting.

You can install pyfastx via the Python Package Index (PyPI)

pip install pyfastx

Update pyfastx module

pip install -U pyfastx

FASTX

New in pyfastx 0.8.0.

Pyfastx provide a simple and fast python binding for kseq.h to iterate over sequences or reads in fasta/q file. The FASTX object will automatically detect the input sequence format (fasta or fastq) to return different tuple.

FASTA sequences iteration

When iterating over sequences on FASTX object, a tuple (name, seq) will be returned.

>>> fa = pyfastx.Fastx('tests/data/test.fa.gz')
>>> for name,seq in fa:
>>>     print(name)
>>>     print(seq)

>>> #always output uppercase sequence
>>> for item in pyfastx.Fastx('tests/data/test.fa', uppercase=True):
>>>     print(item)

>>> #Manually specify sequence format
>>> for item in pyfastx.Fastx('tests/data/test.fa', format="fasta"):
>>>     print(item)

If you want the sequence comment, you can set comment to True, New in pyfastx 0.9.0.

>>> fa = pyfastx.Fastx('tests/data/test.fa.gz', comment=True)
>>> for name,seq,comment in fa:
>>>     print(name)
>>>     print(seq)
>>>     print(comment)

The comment is the content of header line after the first white space or tab character.

FASTQ reads iteration

When iterating over reads on FASTX object, a tuple (name, seq, qual) will be returned.

>>> fq = pyfastx.Fastx('tests/data/test.fq.gz')
>>> for name,seq,qual in fq:
>>>     print(name)
>>>     print(seq)
>>>     print(qual)

If you want the read comment, you can set comment to True, New in pyfastx 0.9.0.

>>> fq = pyfastx.Fastx('tests/data/test.fq.gz', comment=True)
>>> for name,seq,qual,comment in fq:
>>>     print(name)
>>>     print(seq)
>>>     print(qual)
>>>     print(comment)

The comment is the content of header line after the first white space or tab character.

FASTA

Read FASTA file

Read plain or gzipped FASTA file and build index, support for random access to FASTA.

>>> import pyfastx
>>> fa = pyfastx.Fasta('test/data/test.fa.gz')
>>> fa
<Fasta> test/data/test.fa.gz contains 211 seqs

FASTA records iteration

The fastest way to iterate plain or gzipped FASTA file without building index, the iteration will return a tuple contains name and sequence.

>>> import pyfastx
>>> for name, seq in pyfastx.Fasta('test/data/test.fa.gz', build_index=False):
>>>     print(name, seq)

You can also iterate sequence object from FASTA object like this:

>>> import pyfastx
>>> for seq in pyfastx.Fasta('test/data/test.fa.gz'):
>>>     print(seq.name)
>>>     print(seq.seq)
>>>     print(seq.description)

Iteration with build_index=True (default) return sequence object which allows you to access attributions of sequence. New in pyfastx 0.6.3.

Get FASTA information

>>> # get sequence counts in FASTA
>>> len(fa)
211

>>> # get total sequence length of FASTA
>>> fa.size
86262

>>> # get GC content of DNA sequence of FASTA
>>> fa.gc_content
43.529014587402344

>>> # get GC skew of DNA sequences in FASTA
>>> # New in pyfastx 0.3.8
>>> fa.gc_skew
0.004287730902433395

>>> # get composition of nucleotides in FASTA
>>> fa.composition
{'A': 24534, 'C': 18694, 'G': 18855, 'T': 24179}

>>> # get fasta type (DNA, RNA, or protein)
>>> fa.type
'DNA'

>>> # check fasta file is gzip compressed
>>> fa.is_gzip
True

Get longest and shortest sequence

New in pyfastx 0.3.0

>>> # get longest sequence
>>> s = fa.longest
>>> s
<Sequence> JZ822609.1 with length of 821

>>> s.name
'JZ822609.1'

>>> len(s)
821

>>> # get shortest sequence
>>> s = fa.shortest
>>> s
<Sequence> JZ822617.1 with length of 118

>>> s.name
'JZ822617.1'

>>> len(s)
118

Calculate N50 and L50

New in pyfastx 0.3.0

Calculate assembly N50 and L50, return (N50, L50), learn more about N50,L50

>>> # get FASTA N50 and L50
>>> fa.nl(50)
(516, 66)

>>> # get FASTA N90 and L90
>>> fa.nl(90)
(231, 161)

>>> # get FASTA N75 and L75
>>> fa.nl(75)
(365, 117)

Get sequence mean and median length

New in pyfastx 0.3.0

>>> # get sequence average length
>>> fa.mean
408

>>> # get seqeunce median length
>>> fa.median
430

Get sequence counts

New in pyfastx 0.3.0

Get counts of sequences whose length >= specified length

>>> # get counts of sequences with length >= 200 bp
>>> fa.count(200)
173

>>> # get counts of sequences with length >= 500 bp
>>> fa.count(500)
70

Get subsequences

Subsequences can be retrieved from FASTA file by using a list of [start, end] coordinates

>>> # get subsequence with start and end position
>>> interval = (1, 10)
>>> fa.fetch('JZ822577.1', interval)
'CTCTAGAGAT'

>>> # get subsequences with a list of start and end position
>>> intervals = [(1, 10), (50, 60)]
>>> fa.fetch('JZ822577.1', intervals)
'CTCTAGAGATTTTAGTTTGAC'

>>> # get subsequences with reverse strand
>>> fa.fetch('JZ822577.1', (1, 10), strand='-')
'ATCTCTAGAG'

Key function

New in pyfastx 0.5.1

Sometimes your fasta will have a long header which contains multiple identifiers and description, for example, “>JZ822577.1 contig1 cDNA library of flower petals in tree peony by suppression subtractive hybridization Paeonia suffruticosa cDNA, mRNA sequence”. In this case, both “JZ822577.1” and “contig1” can be used as identifer. you can specify the key function to select one as identifier.

>>> #default use JZ822577.1 as identifier
>>> #specify key_func to select contig1 as identifer
>>> fa = pyfastx.Fasta('tests/data/test.fa.gz', key_func=lambda x: x.split()[1])
>>> fa
<Fasta> tests/data/test.fa.gz contains 211 seqs

Sequence

Get a sequence from FASTA

>>> # get sequence like a dictionary by identifier
>>> s1 = fa['JZ822577.1']
>>> s1
<Sequence> JZ822577.1 with length of 333

>>> # get sequence like a list by index
>>> s2 = fa[2]
>>> s2
<Sequence> JZ822579.1 with length of 176

>>> # get last sequence
>>> s3 = fa[-1]
>>> s3
<Sequence> JZ840318.1 with length of 134

>>> # check a sequence name weather in FASTA file
>>> 'JZ822577.1' in fa
True

Get sequence information

>>> s = fa[-1]
>>> s
<Sequence> JZ840318.1 with length of 134

>>> # get sequence order number in FASTA file
>>> # New in pyfastx 0.3.7
>>> s.id
211

>>> # get sequence name
>>> s.name
'JZ840318.1'

>>> # get sequence description
>>> # New in pyfastx 0.3.1
>>> s.description
'R283 cDNA library of flower petals in tree peony by suppression subtractive hybridization Paeonia suffruticosa cDNA, mRNA sequence'

>>> # get sequence string
>>> s.seq
'ACTGGAGGTTCTTCTTCCTGTGGAAAGTAACTTGTTTTGCCTTCACCTGCCTGTTCTTCACATCAACCTTGTTCCCACACAAAACAATGGGAATGTTCTCACACACCCTGCAGAGATCACGATGCCATGTTGGT'

>>> # get sequence raw string, New in pyfastx 0.6.3
>>> print(s.raw)
>JZ840318.1 R283 cDNA library of flower petals in tree peony by suppression subtractive hybridization Paeonia suffruticosa cDNA, mRNA sequence
ACTGGAGGTTCTTCTTCCTGTGGAAAGTAACTTGTTTTGCCTTCACCTGCCTGTTCTTCACATCAACCTT
GTTCCCACACAAAACAATGGGAATGTTCTCACACACCCTGCAGAGATCACGATGCCATGTTGGT

>>> # get sequence length
>>> len(s)
134

>>> # get GC content if dna sequence
>>> s.gc_content
46.26865768432617

>>> # get nucleotide composition if dna sequence
>>> s.composition
{'A': 31, 'C': 37, 'G': 25, 'T': 41, 'N': 0}

Sequence slice

Sequence object can be sliced like a python string

>>> # get a sub seq from sequence
>>> s = fa[-1]
>>> ss = s[10:30]
>>> ss
<Sequence> JZ840318.1 from 11 to 30

>>> ss.name
'JZ840318.1:11-30'

>>> ss.seq
'CTTCTTCCTGTGGAAAGTAA'

>>> ss = s[-10:]
>>> ss
<Sequence> JZ840318.1 from 125 to 134

>>> ss.name
'JZ840318.1:125-134'

>>> ss.seq
'CCATGTTGGT'

Reverse and complement sequence

>>> # get sliced sequence
>>> fa[0][10:20].seq
'GTCAATTTCC'

>>> # get reverse of sliced sequence
>>> fa[0][10:20].reverse
'CCTTTAACTG'

>>> # get complement of sliced sequence
>>> fa[0][10:20].complement
'CAGTTAAAGG'

>>> # get reversed complement sequence, corresponding to sequence in antisense strand
>>> fa[0][10:20].antisense
'GGAAATTGAC'

Read sequence line by line

New in pyfastx 0.3.0

The sequence object can be iterated line by line as they appear in FASTA file.

>>> for line in fa[0]:
...     print(line)
...
CTCTAGAGATTACTTCTTCACATTCCAGATCACTCAGGCTCTTTGTCATTTTAGTTTGACTAGGATATCG
AGTATTCAAGCTCATCGCTTTTGGTAATCTTTGCGGTGCATGCCTTTGCATGCTGTATTGCTGCTTCATC
ATCCCCTTTGACTTGTGTGGCGGTGGCAAGACATCCGAAGAGTTAAGCGATGCTTGTCTAGTCAATTTCC
CCATGTACAGAATCATTGTTGTCAATTGGTTGTTTCCTTGATGGTGAAGGGGCTTCAATACATGAGTTCC
AAACTAACATTTCTTGACTAACACTTGAGGAAGAAGGACAAGGGTCCCCATGT

Search for subsequence

New in pyfastx 0.3.6

Search for subsequence from given sequence and get one-based start position of the first occurrence

>>> # search subsequence in sense strand
>>> fa[0].search('GCTTCAATACA')
262

>>> # check subsequence weather in sequence
>>> 'GCTTCAATACA' in fa[0]
True

>>> # search subsequence in antisense strand
>>> fa[0].search('CCTCAAGT', '-')
301

FastaKeys

New in pyfastx 0.8.0. We have changed Identifier object to FastaKeys object.

Get keys

Get all names of sequence as a list-like object.

>>> ids = fa.keys()
>>> ids
<FastaKeys> contains 211 keys

>>> # get count of sequence
>>> len(ids)
211

>>> # get key by index
>>> ids[0]
'JZ822577.1'

>>> # check key whether in fasta
>>> 'JZ822577.1' in ids
True

>>> # iterate over keys
>>> for name in ids:
>>>     print(name)

>>> # convert to a list
>>> list(ids)

Sort keys

Sort keys by sequence id, name, or length for iteration

New in pyfastx 0.5.0

>>> # sort keys by length with descending order
>>> for name in ids.sort(by='length', reverse=True):
>>>     print(name)

>>> # sort keys by name with ascending order
>>> for name in ids.sort(by='name'):
>>>     print(name)

>>> # sort keys by id with descending order
>>> for name in ids.sort(by='id', reverse=True)
>>>     print(name)

Filter keys

Filter keys by sequence length and name

New in pyfastx 0.5.10

>>> # get keys with length > 600
>>> ids.filter(ids > 600)
<FastaKeys> contains 48 keys

>>> # get keys with length >= 500 and <= 700
>>> ids.filter(ids>=500, ids<=700)
<FastaKeys> contains 48 keys

>>> # get keys with length > 500 and < 600
>>> ids.filter(500<ids<600)
<FastaKeys> contains 22 keys

>>> # get keys contain JZ8226
>>> ids.filter(ids % 'JZ8226')
<FastaKeys> contains 90 keys

>>> # get keys contain JZ8226 with length > 550
>>> ids.filter(ids % 'JZ8226', ids>550)
<FastaKeys> contains 17 keys

>>> # clear sort order and filters
>>> ids.reset()
<FastaKeys> contains 211 keys

>>> # list a filtered result
>>> ids.filter(ids % 'JZ8226', ids>730)
>>> list(ids)
['JZ822609.1', 'JZ822650.1', 'JZ822664.1', 'JZ822699.1']

>>> # list a filtered result with sort order
>>> ids.filter(ids % 'JZ8226', ids>730).sort('length', reverse=True)
>>> list(ids)
['JZ822609.1', 'JZ822699.1', 'JZ822664.1', 'JZ822650.1']

>>> ids.filter(ids % 'JZ8226', ids>730).sort('name', reverse=True)
>>> list(ids)
['JZ822699.1', 'JZ822664.1', 'JZ822650.1', 'JZ822609.1']

FASTQ

New in pyfastx 0.4.0

Read FASTQ file

Read plain or gzipped file and build index, support for random access to reads from FASTQ.

>>> import pyfastx
>>> fq = pyfastx.Fastq('tests/data/test.fq.gz')
>>> fq
<Fastq> tests/data/test.fq.gz contains 100 reads

FASTQ records iteration

The fastest way to parse plain or gzipped FASTQ file without building index, the iteration will return a tuple contains read name, seq and quality.

>>> import pyfastx
>>> for name,seq,qual in pyfastx.Fastq('tests/data/test.fq.gz', build_index=False):
>>>     print(name)
>>>     print(seq)
>>>     print(qual)

You can also iterate read object from FASTQ object like this:

>>> import pyfastx
>>> for read in pyfastx.Fastq('test/data/test.fq.gz'):
>>>     print(read.name)
>>>     print(read.seq)
>>>     print(read.qual)
>>>     print(read.quali)

Iteration with build_index=True (default) return read object which allows you to access attribution of read. New in pyfastx 0.6.3.

Get FASTQ information

>>> # get read counts in FASTQ
>>> len(fq)
800

>>> # get total bases
>>> fq.size
120000

>>> # get GC content of FASTQ file
>>> fq.gc_content
66.17471313476562

>>> # get composition of bases in FASTQ
>>> fq.composition
{'A': 20501, 'C': 39705, 'G': 39704, 'T': 20089, 'N': 1}

>>> # New in pyfastx 0.6.10
>>> # get average length of reads
>>> fq.avglen
150.0

>>> # get maximum lenth of reads
>>> fq.maxlen
150

>>> # get minimum length of reas
>>> fq.minlen
150

>>> # get maximum quality score
>>> fq.maxqual
70

>>> # get minimum quality score
>>> fq.minqual
35

>>> # get phred which affects the quality score conversion
>>> fq.phred
33

>>> # Guess fastq quality encoding system
>>> # New in pyfastx 0.4.1
>>> fq.encoding_type
['Sanger Phred+33', 'Illumina 1.8+ Phred+33']

Read

Get read from FASTQ

>>> #get read like a dict by read name
>>> r1 = fq['A00129:183:H77K2DMXX:1:1101:4752:1047']
>>> r1
<Read> A00129:183:H77K2DMXX:1:1101:4752:1047 with length of 150

>>> # get read like a list by index
>>> r2 = fq[10]
>>> r2
<Read> A00129:183:H77K2DMXX:1:1101:18041:1078 with length of 150

>>> # get the last read
>>> r3 = fq[-1]
>>> r3
<Read> A00129:183:H77K2DMXX:1:1101:31575:4726 with length of 150

>>> # check a read weather in FASTQ file
>>> 'A00129:183:H77K2DMXX:1:1101:4752:1047' in fq
True

Get read information

>>> r = fq[-10]
>>> r
<Read> A00129:183:H77K2DMXX:1:1101:1750:4711 with length of 150

>>> # get read order number in FASTQ file
>>> r.id
791

>>> # get read name
>>> r.name
'A00129:183:H77K2DMXX:1:1101:1750:4711'

>>> # get read full header line, New in pyfastx 0.6.3
>>> r.description
'@A00129:183:H77K2DMXX:1:1101:1750:4711 1:N:0:CAATGGAA+CGAGGCTG'

>>> # get read length
>>> len(r)
150

>>> # get read sequence
>>> r.seq
'CGAGGAAATCGACGTCACCGATCTGGAAGCCCTGCGCGCCCATCTCAACCAGAAATGGGGTGGCCAGCGCGGCAAGCTGACCCTGCTGCCGTTCCTGGTCCGCGCCATGGTCGTGGCGCTGCGCGACTTCCCGCAGTTGAACGCGCGCTA'

>>> # get raw string of read, New in pyfastx 0.6.3
>>> print(r.raw)
@A00129:183:H77K2DMXX:1:1101:1750:4711 1:N:0:CAATGGAA+CGAGGCTG
CGAGGAAATCGACGTCACCGATCTGGAAGCCCTGCGCGCCCATCTCAACCAGAAATGGGGTGGCCAGCGCGGCAAGCTGACCCTGCTGCCGTTCCTGGTCCGCGCCATGGTCGTGGCGCTGCGCGACTTCCCGCAGTTGAACGCGCGCTA
+
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF:FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF:FF,FFFFFFFFFFFFFFFFFFFFFFFFFF,F:FFFFFFFFF:

>>> # get read quality ascii string
>>> r.qual
'FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF:FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF:FF,FFFFFFFFFFFFFFFFFFFFFFFFFF,F:FFFFFFFFF:'

>>> # get read quality integer value, ascii - 33 or 64
>>> r.quali
[37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 25, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 25, 37, 37, 11, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 11, 37, 25, 37, 37, 37, 37, 37, 37, 37, 37, 37, 25]

>>> # get read length
>>> len(r)
150

FastqKeys

New in pyfastx 0.8.0.

Get fastq keys

Get all names of read as a list-like object.

>>> ids = fq.keys()
>>> ids
<FastqKeys> contains 800 keys

>>> # get count of read
>>> len(ids)
800

>>> # get key by index
>>> ids[0]
'A00129:183:H77K2DMXX:1:1101:6804:1031'

>>> # check key whether in fasta
>>> 'A00129:183:H77K2DMXX:1:1101:14416:1031' in ids
True

Command line interface

New in pyfastx 0.5.0

$ pyfastx -h

usage: pyfastx COMMAND [OPTIONS]

A command line tool for FASTA/Q file manipulation

optional arguments:
  -h, --help     show this help message and exit
  -v, --version  show program's version number and exit

Commands:

    index        build index for fasta/q file
    stat         show detailed statistics information of fasta/q file
    split        split fasta/q file into multiple files
    fq2fa        convert fastq file to fasta file
    subseq       get subsequences from fasta file by region
    sample       randomly sample sequences from fasta or fastq file
    extract      extract full sequences or reads from fasta/q file

Build index

New in pyfastx 0.6.10

$ pyfastx index -h

usage: pyfastx index [-h] [-f] fastx [fastx ...]

positional arguments:
  fastx       fasta or fastq file, gzip support

optional arguments:
  -h, --help  show this help message and exit
  -f, --full  build full index, base composition will be calculated

Show statistics information

$ pyfastx stat -h

usage: pyfastx info [-h] fastx

positional arguments:
  fastx       input fasta or fastq file, gzip support

optional arguments:
  -h, --help  show this help message and exit

Split FASTA/Q file

$ pyfastx split -h

usage: pyfastx split [-h] (-n int | -c int) [-o str] fastx

positional arguments:
  fastx                 fasta or fastq file, gzip support

optional arguments:
  -h, --help            show this help message and exit
  -n int                split a fasta/q file into N new files with even size
  -c int                split a fasta/q file into multiple files containing the same sequence counts
  -o str, --out-dir str
                        output directory, default is current folder

Convert FASTQ to FASTA file

$ pyfastx fq2fa -h

usage: pyfastx fq2fa [-h] [-o str] fastx

positional arguments:
  fastx                 fastq file, gzip support

optional arguments:
  -h, --help            show this help message and exit
  -o str, --out-file str
                        output file, default: output to stdout

Get subsequence with region

$ pyfastx subseq -h

usage: pyfastx subseq [-h] [-r str | -b str] [-o str] fastx [region [region ...]]

positional arguments:
  fastx                 input fasta file, gzip support
  region                format is chr:start-end, start and end position is 1-based, multiple names were separated by space

optional arguments:
  -h, --help            show this help message and exit
  -r str, --region-file str
                        tab-delimited file, one region per line, both start and end position are 1-based
  -b str, --bed-file str
                        tab-delimited BED file, 0-based start position and 1-based end position
  -o str, --out-file str
                        output file, default: output to stdout

Sample sequences

$ pyfastx sample -h

usage: pyfastx sample [-h] (-n int | -p float) [-s int] [--sequential-read] [-o str] fastx

positional arguments:
  fastx                 fasta or fastq file, gzip support

optional arguments:
  -h, --help            show this help message and exit
  -n int                number of sequences to be sampled
  -p float              proportion of sequences to be sampled, 0~1
  -s int, --seed int    random seed, default is the current system time
  --sequential-read     start sequential reading, particularly suitable for sampling large numbers of sequences
  -o str, --out-file str
                        output file, default: output to stdout

Extract sequences

New in pyfastx 0.6.10

$ pyfastx extract -h

usage: pyfastx extract [-h] [-l str] [--reverse-complement] [--out-fasta] [-o str] [--sequential-read]
                       fastx [name [name ...]]

positional arguments:
  fastx                 fasta or fastq file, gzip support
  name                  sequence name or read name, multiple names were separated by space

optional arguments:
  -h, --help            show this help message and exit
  -l str, --list-file str
                        a file containing sequence or read names, one name per line
  --reverse-complement  output reverse complement sequence
  --out-fasta           output fasta format when extract reads from fastq, default output fastq format
  -o str, --out-file str
                        output file, default: output to stdout
  --sequential-read     start sequential reading, particularly suitable for extracting large numbers of sequences

Drawbacks

If you intensively check sequence names exists in FASTA file using in operator on FASTA object like:

>>> fa = pyfastx.Fasta('tests/data/test.fa.gz')
>>> # Suppose seqnames has 100000 names
>>> for seqname in seqnames:
>>>     if seqname in fa:
>>>             do something

This will take a long time to finish. Becuase, pyfastx does not load the index into memory, the in operating is corresponding to sql query existence from index database. The faster alternative way to do this is:

>>> fa = pyfastx.Fasta('tests/data/test.fa.gz')
>>> # load all sequence names into a set object
>>> all_names = set(fa.keys())
>>> for seqname in seqnames:
>>>     if seqname in all_names:
>>>             do something

Testing

The pyfaidx module was used to test pyfastx. First, make sure you have a suitable version installed:

pip install pyfastx

To test pyfastx, you should also install pyfaidx 0.5.8:

pip install pyfaidx==0.5.8

Then, to run the tests:

$ python setup.py test

Acknowledgements

kseq.h and zlib was used to parse FASTA format. Sqlite3 was used to store built indexes. pyfastx can randomly access to sequences from gzipped FASTA file mainly attributed to indexed_gzip.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyfastx-2.2.0.tar.gz (261.1 kB view details)

Uploaded Source

Built Distributions

pyfastx-2.2.0-cp313-cp313-win_amd64.whl (681.8 kB view details)

Uploaded CPython 3.13 Windows x86-64

pyfastx-2.2.0-cp313-cp313-win32.whl (575.1 kB view details)

Uploaded CPython 3.13 Windows x86

pyfastx-2.2.0-cp313-cp313-musllinux_1_2_x86_64.whl (869.5 kB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ x86-64

pyfastx-2.2.0-cp313-cp313-musllinux_1_2_i686.whl (939.6 kB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ i686

pyfastx-2.2.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (841.8 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

pyfastx-2.2.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (904.4 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

pyfastx-2.2.0-cp313-cp313-macosx_10_13_x86_64.whl (781.8 kB view details)

Uploaded CPython 3.13 macOS 10.13+ x86-64

pyfastx-2.2.0-cp312-cp312-win_amd64.whl (681.9 kB view details)

Uploaded CPython 3.12 Windows x86-64

pyfastx-2.2.0-cp312-cp312-win32.whl (575.1 kB view details)

Uploaded CPython 3.12 Windows x86

pyfastx-2.2.0-cp312-cp312-musllinux_1_2_x86_64.whl (869.8 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

pyfastx-2.2.0-cp312-cp312-musllinux_1_2_i686.whl (939.6 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ i686

pyfastx-2.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (841.8 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pyfastx-2.2.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (904.5 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

pyfastx-2.2.0-cp312-cp312-macosx_10_13_x86_64.whl (781.9 kB view details)

Uploaded CPython 3.12 macOS 10.13+ x86-64

pyfastx-2.2.0-cp311-cp311-win_amd64.whl (681.7 kB view details)

Uploaded CPython 3.11 Windows x86-64

pyfastx-2.2.0-cp311-cp311-win32.whl (574.9 kB view details)

Uploaded CPython 3.11 Windows x86

pyfastx-2.2.0-cp311-cp311-musllinux_1_2_x86_64.whl (869.8 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

pyfastx-2.2.0-cp311-cp311-musllinux_1_2_i686.whl (938.5 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ i686

pyfastx-2.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (841.3 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pyfastx-2.2.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (903.8 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

pyfastx-2.2.0-cp311-cp311-macosx_10_9_x86_64.whl (781.5 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyfastx-2.2.0-cp310-cp310-win_amd64.whl (681.7 kB view details)

Uploaded CPython 3.10 Windows x86-64

pyfastx-2.2.0-cp310-cp310-win32.whl (574.9 kB view details)

Uploaded CPython 3.10 Windows x86

pyfastx-2.2.0-cp310-cp310-musllinux_1_2_x86_64.whl (869.8 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

pyfastx-2.2.0-cp310-cp310-musllinux_1_2_i686.whl (938.5 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ i686

pyfastx-2.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (841.2 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyfastx-2.2.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (903.8 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

pyfastx-2.2.0-cp310-cp310-macosx_10_9_x86_64.whl (781.5 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyfastx-2.2.0-cp39-cp39-win_amd64.whl (681.7 kB view details)

Uploaded CPython 3.9 Windows x86-64

pyfastx-2.2.0-cp39-cp39-win32.whl (575.0 kB view details)

Uploaded CPython 3.9 Windows x86

pyfastx-2.2.0-cp39-cp39-musllinux_1_2_x86_64.whl (869.8 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

pyfastx-2.2.0-cp39-cp39-musllinux_1_2_i686.whl (938.5 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ i686

pyfastx-2.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (841.2 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pyfastx-2.2.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (903.8 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

pyfastx-2.2.0-cp39-cp39-macosx_10_9_x86_64.whl (781.5 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyfastx-2.2.0-cp38-cp38-win_amd64.whl (681.8 kB view details)

Uploaded CPython 3.8 Windows x86-64

pyfastx-2.2.0-cp38-cp38-win32.whl (574.9 kB view details)

Uploaded CPython 3.8 Windows x86

pyfastx-2.2.0-cp38-cp38-musllinux_1_2_x86_64.whl (869.8 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ x86-64

pyfastx-2.2.0-cp38-cp38-musllinux_1_2_i686.whl (938.5 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ i686

pyfastx-2.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (841.2 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pyfastx-2.2.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (903.7 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

pyfastx-2.2.0-cp38-cp38-macosx_10_9_x86_64.whl (781.5 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

pyfastx-2.2.0-cp37-cp37m-win_amd64.whl (681.6 kB view details)

Uploaded CPython 3.7m Windows x86-64

pyfastx-2.2.0-cp37-cp37m-win32.whl (574.9 kB view details)

Uploaded CPython 3.7m Windows x86

pyfastx-2.2.0-cp37-cp37m-musllinux_1_2_x86_64.whl (869.6 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ x86-64

pyfastx-2.2.0-cp37-cp37m-musllinux_1_2_i686.whl (938.4 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ i686

pyfastx-2.2.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (841.0 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pyfastx-2.2.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (903.6 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

pyfastx-2.2.0-cp37-cp37m-macosx_10_9_x86_64.whl (781.5 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

pyfastx-2.2.0-cp36-cp36m-win_amd64.whl (729.9 kB view details)

Uploaded CPython 3.6m Windows x86-64

pyfastx-2.2.0-cp36-cp36m-win32.whl (608.1 kB view details)

Uploaded CPython 3.6m Windows x86

pyfastx-2.2.0-cp36-cp36m-musllinux_1_2_x86_64.whl (868.8 kB view details)

Uploaded CPython 3.6m musllinux: musl 1.2+ x86-64

pyfastx-2.2.0-cp36-cp36m-musllinux_1_2_i686.whl (938.1 kB view details)

Uploaded CPython 3.6m musllinux: musl 1.2+ i686

pyfastx-2.2.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (841.3 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

pyfastx-2.2.0-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (904.4 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

pyfastx-2.2.0-cp36-cp36m-macosx_10_9_x86_64.whl (781.8 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file pyfastx-2.2.0.tar.gz.

File metadata

  • Download URL: pyfastx-2.2.0.tar.gz
  • Upload date:
  • Size: 261.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.8

File hashes

Hashes for pyfastx-2.2.0.tar.gz
Algorithm Hash digest
SHA256 80f1585a0c0fd021d1e0091ec4275a2bed6587633bf69165748ff1a541fdcc27
MD5 f79df6d4f0f977c104f2692c027c62df
BLAKE2b-256 a554b91919749f641cae82a804a8d0c582443d32db1ec0cc0d3af30b135567d6

See more details on using hashes here.

File details

Details for the file pyfastx-2.2.0-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: pyfastx-2.2.0-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 681.8 kB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.8

File hashes

Hashes for pyfastx-2.2.0-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 3d6b882594b233724dfa9ecca4d2fd55456bf6b08c9b79aa4dc06ff15c1ffdea
MD5 83c0e586762154e5bc27fae4d0e4bd01
BLAKE2b-256 f5df8b44bfe9c43a2d4d3ba48da23c2becddd053ea9065a894559f322aa38f8b

See more details on using hashes here.

File details

Details for the file pyfastx-2.2.0-cp313-cp313-win32.whl.

File metadata

  • Download URL: pyfastx-2.2.0-cp313-cp313-win32.whl
  • Upload date:
  • Size: 575.1 kB
  • Tags: CPython 3.13, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.8

File hashes

Hashes for pyfastx-2.2.0-cp313-cp313-win32.whl
Algorithm Hash digest
SHA256 346c6f54019ae065ab6194d75c821bdbbdc27e667f41f3675bc1364785737313
MD5 d5418e86f20b4016ef9f85c1af3066a6
BLAKE2b-256 448cf02503197b99b09c62a90af4dc8189efbe0aefe2786655c77fcd51207aad

See more details on using hashes here.

File details

Details for the file pyfastx-2.2.0-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pyfastx-2.2.0-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 16a211abc16184e20edcc7f4329590d4a68ec43a4782fa70e5883adae41703cf
MD5 8f054047d0cd69a18b63a1792620a7ef
BLAKE2b-256 0351ac63cf8bb9b14627084004ddfdc3fcf7adf9672187af4d765d6f75f6549a

See more details on using hashes here.

File details

Details for the file pyfastx-2.2.0-cp313-cp313-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for pyfastx-2.2.0-cp313-cp313-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 1183e7c2be568186bcb7b7ccd76d3b80d37d14191c80236dca2de23e18e42d10
MD5 089e5ed3c8c73a3a3a4d3425efa8e189
BLAKE2b-256 68a9c315455c6937e626dabe564a7cd01021b4dd264bd096e51f5cb9a04e7c1b

See more details on using hashes here.

File details

Details for the file pyfastx-2.2.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyfastx-2.2.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bff0eb6452ceca2d5402259014a1cb1f9cf4359f3f1cb5059a3ccaf4874f0d81
MD5 1aeb4daf4ee16f268d56766e6ff1aba0
BLAKE2b-256 ed7aff65d178a9276ab71349f046ce5ca23d1d354afa5efad063ee0c5da5e44c

See more details on using hashes here.

File details

Details for the file pyfastx-2.2.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyfastx-2.2.0-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 110fe413ba9eaece38857db77e75fa18f7ff5426013cac260819715ab3738f1a
MD5 3858bad11104c4d36af8f4eae8ffd482
BLAKE2b-256 32a454f6b8565771ced2cb1338ce0535f1a69848891b3a20382b076f97233255

See more details on using hashes here.

File details

Details for the file pyfastx-2.2.0-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pyfastx-2.2.0-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 f8c7f07c70db9fee1769baafd75e89e2a9d9eb6055269fc2dc349a6e5c7f6b3c
MD5 655dc87d63a0f3deea8a7c7b6d256a7c
BLAKE2b-256 036b3714e63b7419f3ae409769ae3e0b8cbbdb6c0139136af46a018cc00ae072

See more details on using hashes here.

File details

Details for the file pyfastx-2.2.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: pyfastx-2.2.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 681.9 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.8

File hashes

Hashes for pyfastx-2.2.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 5956b4a51cff100fea56058bc90317d7e470dcc2a704e16882fac70a20133503
MD5 02d57c2e484346030375b1cd29111549
BLAKE2b-256 834374c580086e663c2e0ac80d7933a912a27c1f584adf5ca7841157f9f7c067

See more details on using hashes here.

File details

Details for the file pyfastx-2.2.0-cp312-cp312-win32.whl.

File metadata

  • Download URL: pyfastx-2.2.0-cp312-cp312-win32.whl
  • Upload date:
  • Size: 575.1 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.8

File hashes

Hashes for pyfastx-2.2.0-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 0f61aed4145231ca7572a149ca56e4f57ca7435c6c0cdd766908c0f3bfd6784e
MD5 0481e589d88c69d2f72d333f726bc1e5
BLAKE2b-256 ddeef73558caa38a680b6abcca225cc250a4376b9e67ef3cd27c70761e651ffb

See more details on using hashes here.

File details

Details for the file pyfastx-2.2.0-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pyfastx-2.2.0-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 1ac393e22638497ee9e2d2a2c1a518c55a9c570caf03189ce55092ebd84da68f
MD5 413a8adaea9656d919e7cd53062f9455
BLAKE2b-256 05966ed18b122bc53201853649bf89ec375291444d23f7c7ca270e1b2ac4ce9b

See more details on using hashes here.

File details

Details for the file pyfastx-2.2.0-cp312-cp312-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for pyfastx-2.2.0-cp312-cp312-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 dc81b19c7707d7478018f01e0fbad863180bcc2aa7a0a8b752d111096dc19aa8
MD5 50de64b1458086d8832006a97052bea0
BLAKE2b-256 7d66b03d628015e27c66c7cba0094c9cc067bbb867a3eaf8f6117bfe2659e592

See more details on using hashes here.

File details

Details for the file pyfastx-2.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyfastx-2.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 72e347e959de5933e57fabe348b14ce5f1ccdef6d6064a7339a537e7c9994f43
MD5 727f11b0e0b2af5161360c23004ccc4e
BLAKE2b-256 1f9b860b1f95ed305c0ae42d943cf9006733fd6bbb879ccf21a542e905b5d991

See more details on using hashes here.

File details

Details for the file pyfastx-2.2.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyfastx-2.2.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 e7063722882dff39058d123a1acaf8e889115c66faad04131d69ed8048993e50
MD5 8ab7160047bfb12a3535396516cd015c
BLAKE2b-256 f14e7626f5dfc2598f7057c3e77b49fe74672364647e2dbe7fa7a47e29d44f8e

See more details on using hashes here.

File details

Details for the file pyfastx-2.2.0-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pyfastx-2.2.0-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 bfd5429595000c1e1460e2330e918e2de8dd7def582522a1dc607b6d0c0008b0
MD5 161771084cae3e2af373712089d15ebc
BLAKE2b-256 c0ba2494f64538417c066e6e1d3d123b3b22d0643b2369e34a5a7a3322f43f61

See more details on using hashes here.

File details

Details for the file pyfastx-2.2.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: pyfastx-2.2.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 681.7 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.8

File hashes

Hashes for pyfastx-2.2.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 ddde6289ed4addb1dc88046ce173ffb2506db366e92fb34a291fc68ac3ba254c
MD5 f05f7838908aaac9e1465067a4930ac5
BLAKE2b-256 044196d0b6e00527bcf2f7d8cad94529035b03b1f271186ddc99d07c6cd3362c

See more details on using hashes here.

File details

Details for the file pyfastx-2.2.0-cp311-cp311-win32.whl.

File metadata

  • Download URL: pyfastx-2.2.0-cp311-cp311-win32.whl
  • Upload date:
  • Size: 574.9 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.8

File hashes

Hashes for pyfastx-2.2.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 c102bcc3fe7ef1b751f0dd2e0015f3cb1454e1c2b415ec934c557172236ba450
MD5 7e0468594f0acb267c36be95d67d9373
BLAKE2b-256 0c48db6424b84d40b5c638fca1d02118774d53bef7a9d010369e0cc590b479b5

See more details on using hashes here.

File details

Details for the file pyfastx-2.2.0-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pyfastx-2.2.0-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 634946071f69adffde14e9d8da9feb24702b7bef4d954cd36b585a41a853dce2
MD5 c93d0a80635d7dd27e57e94d9dad8a3c
BLAKE2b-256 10bee6b56ad25c7023c43411a2e2bf8be1ab43ec02f106328d52252d2a0a1fef

See more details on using hashes here.

File details

Details for the file pyfastx-2.2.0-cp311-cp311-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for pyfastx-2.2.0-cp311-cp311-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 c0a123d257190c85b558abe1fb974d9c1c79f16c58aee8639d7b1a49490da051
MD5 38888a7851fec11ba45b4618706379d7
BLAKE2b-256 0bb6b3d556d9e4e1076101190f0a683235796bf85922ae98c62f924568f5f022

See more details on using hashes here.

File details

Details for the file pyfastx-2.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyfastx-2.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 136a6af0a23688d18429f71ffdb0f391743639deeae5573e948b5fddacc71a6d
MD5 8ee1bcdb0112867f446d1b420d47f099
BLAKE2b-256 1811d4a36c62576c4448ad85af7cdd3b362891082807fef3f9d3363888d925d9

See more details on using hashes here.

File details

Details for the file pyfastx-2.2.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyfastx-2.2.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 dcf40d705c66eb03b7822acba7350d25bd9b3a3790f76ebee197350b698c13d9
MD5 56529d315572d8cdd6c3e0257d4f8c3d
BLAKE2b-256 b0041e7e23740b65b34e7c532a8efa12544acef88f9398510c3ae79b6ce9c8eb

See more details on using hashes here.

File details

Details for the file pyfastx-2.2.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyfastx-2.2.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 63a986ee5483c2575bbdbbf6cf2220b83cb6cea8544403914e8498a1ea645a3d
MD5 c107ab401ca6e5ca0c22c75674e63deb
BLAKE2b-256 87b6b3d77bf7680e6b15e882cf73d0d76c453265113ad5e344fb232e7073a85f

See more details on using hashes here.

File details

Details for the file pyfastx-2.2.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pyfastx-2.2.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 681.7 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.8

File hashes

Hashes for pyfastx-2.2.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 58bc41c8da200d948551d190d277e5dcb6eff1ce21cf7060029019c7e4654d7d
MD5 5d60db39eb03fe3d303fea89e3309028
BLAKE2b-256 164a504283e29024a84b61bf1ba8ce40505f01ba2969ff63cd5d75fe52fc453a

See more details on using hashes here.

File details

Details for the file pyfastx-2.2.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: pyfastx-2.2.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 574.9 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.8

File hashes

Hashes for pyfastx-2.2.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 4153dadd5218b80a59410f453f1ace02f243e48e7652eefd8d643769214d25c5
MD5 fbf46c8693c389adf13e2d70bb97eb0c
BLAKE2b-256 01e7374cb17e7917e4d8f8512d4cc04925d9d8ae527cd614b33d13ba98365c22

See more details on using hashes here.

File details

Details for the file pyfastx-2.2.0-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pyfastx-2.2.0-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 da866dd8d27981a7f0cb3099f64525adcb16b01d6e55487af936db6eaebfc894
MD5 dff744980ad8900e195e55d8202fbcf8
BLAKE2b-256 aefe09508b4f5c72941bccd9c532ae9863cc1f26cfc9cad83909c8f89a41af86

See more details on using hashes here.

File details

Details for the file pyfastx-2.2.0-cp310-cp310-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for pyfastx-2.2.0-cp310-cp310-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 4674567c1ec36844a0aff21febefa655302af262eedc4dd2a0dcd3da2562fc31
MD5 0e1d1a1b0bc23cbc1d5fb23ae15af3ef
BLAKE2b-256 e553ea12d24b186e49e30899af9dc1ad8217d244449d6438737722b41bcbb76f

See more details on using hashes here.

File details

Details for the file pyfastx-2.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyfastx-2.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 407f669b9135830b0535b12efbbf7f0b8d9f00c49746b31f85b5cacee19d73a1
MD5 ec42710c107b7fd65cf227bf0ae7d4c8
BLAKE2b-256 728a6ebb17542ac8a26434540f496a6ead64a57872411182e8ab3e8b2807e5b2

See more details on using hashes here.

File details

Details for the file pyfastx-2.2.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyfastx-2.2.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 990bdc9b47f48d1be837da9e85191efb598b63af9a50eac57769ca15ca4a5866
MD5 7d91764e0f31deb9c458cb4b49e0d328
BLAKE2b-256 8cef15cbb835694c77197dba0b10761a9579c541fbbdf1aed462b33249f68329

See more details on using hashes here.

File details

Details for the file pyfastx-2.2.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyfastx-2.2.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9be040933fb65fabba1b7ccb9a022607acdb5936c54f07c662b49f7bd05ffff5
MD5 1905eb3ab6661888b310f306e8249b33
BLAKE2b-256 3c36da439755ce0f36b5e57f383179f9b9b2309a604947c32a7ecdb166b06318

See more details on using hashes here.

File details

Details for the file pyfastx-2.2.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pyfastx-2.2.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 681.7 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.8

File hashes

Hashes for pyfastx-2.2.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 d5b50138a66cf4a1ba7215e3779ff986c3d1edc6617028a9c55c411aae579fda
MD5 aad53ea4b66dc577ec3e139568c366ad
BLAKE2b-256 aaf142b2fde1a5aadfbdb1d8f3a0660a8f4c4b3a34c4df069495ccc6780ded65

See more details on using hashes here.

File details

Details for the file pyfastx-2.2.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: pyfastx-2.2.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 575.0 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.8

File hashes

Hashes for pyfastx-2.2.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 978b7c4f0e5ea4d5d480081caa3bd076b0be64b8e64c4f8d7029d51af568faa9
MD5 d946116ba73f6ab5568c5ae0c1ae625b
BLAKE2b-256 0e7ff06e788136748def0227ce8a9a32ae2e187e76760685b064a2e4eb627f2e

See more details on using hashes here.

File details

Details for the file pyfastx-2.2.0-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pyfastx-2.2.0-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 2442d4a41f35afc4b9a836cad265dd003b5a10e08acd5c23802e6afc5749a3a5
MD5 5af67bfa1b824efa49fd72ef9188ec3c
BLAKE2b-256 6021ea51b9616f95ec9187dd85a6a6149eb0ccf97d28c6094b913eed50de6ed6

See more details on using hashes here.

File details

Details for the file pyfastx-2.2.0-cp39-cp39-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for pyfastx-2.2.0-cp39-cp39-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 b0756b850a4b7754fd75facbcf8887d3974555e144f27adad93d056e1f29a35a
MD5 85ee487668e42cb38f9b269bb7fff40d
BLAKE2b-256 98557b76e9c248347f607931c6e43c57ecca5f74ae9f3e1f5c62eb8797a3f4ec

See more details on using hashes here.

File details

Details for the file pyfastx-2.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyfastx-2.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a15ea288cbd69f0553f3ea1df48d9098fda32b19b96887e68d85eb97eddce889
MD5 e5d99f5a4cbf8c8a1e32be462ce1205d
BLAKE2b-256 586156b32f2825759f3f0c796567fbe89c3f8462a6db7105ec30b30f2a96b88e

See more details on using hashes here.

File details

Details for the file pyfastx-2.2.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyfastx-2.2.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 bb3c4a18ec686c05efd517b805891255f4565b24ed2db77f3b3a72b6bf75f568
MD5 55ba1e1c41b593638d5aed0e8658be17
BLAKE2b-256 add79ce7fa84bc3d1e791a6a8666b1cbc0a3b2a09511d1f0df9ab339efc4e6ec

See more details on using hashes here.

File details

Details for the file pyfastx-2.2.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyfastx-2.2.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5684a765c39dddc3cf3508605f73d27f1de3691bbd0c1aab47b89ede99cded55
MD5 16ff6f156d2451afec552d229e9eaf66
BLAKE2b-256 7f0aab7174113b3f5d45ee7b90f83b51171d9b4e0e2063582b4d5be35b8be483

See more details on using hashes here.

File details

Details for the file pyfastx-2.2.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pyfastx-2.2.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 681.8 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.8

File hashes

Hashes for pyfastx-2.2.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 dc8d43cfb7cd06411112ca37c75e76d0242d7d5509f16f8c9d17a3d494ee59e0
MD5 65a0849a8f7f8eda722d8167ea4dc226
BLAKE2b-256 9ede838c22437fb27856116d229b0cf38246df0d9aa0b450dee7ae859445760b

See more details on using hashes here.

File details

Details for the file pyfastx-2.2.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: pyfastx-2.2.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 574.9 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.8

File hashes

Hashes for pyfastx-2.2.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 07b7a0a533e2d1950d6908f42ae6d8e45b41bffdd5cc82fe9a89daa1d6f5bea1
MD5 4a492768158ff4e61e74c7e389b61fe8
BLAKE2b-256 7046f1d6f14032ee2e8b252e3ee4886a68ef78bd79731dc3e139b4adac27729e

See more details on using hashes here.

File details

Details for the file pyfastx-2.2.0-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pyfastx-2.2.0-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 9f39393c4705678a86368499eac8232e75853859e3ff5d8fbad6cb8194bc9e53
MD5 9cc5446807a8dc802f0958b67e27469a
BLAKE2b-256 d0ac2e5598bfef3fdf9103837d63ef330a18903e6023a82de0597789ee3eb0e2

See more details on using hashes here.

File details

Details for the file pyfastx-2.2.0-cp38-cp38-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for pyfastx-2.2.0-cp38-cp38-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 b6749b095494c0b798ca37ea602a4f00aab9f07e17ba2fe89e0b82654ee94d6c
MD5 0f5359f6d59d6c76d4baa242922c92bd
BLAKE2b-256 9ea38dffe880d21172d153467180d6a4c6054b2e70650aad616585ebbc3e3fb1

See more details on using hashes here.

File details

Details for the file pyfastx-2.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyfastx-2.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ea3290502077bd20b413194e9851a474e14476d5b19017c0754d5371ec80b2a4
MD5 903d7625b6e22ad95a3e92f2b339c0a6
BLAKE2b-256 ae4d66c8d0d5f337acde8743fc0ece1e5a0d8ab9778ad69575a5cd02b00cadb2

See more details on using hashes here.

File details

Details for the file pyfastx-2.2.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyfastx-2.2.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 eb83199707d77a3b56ac3ef67509418f48456c30119de50fc2c8588d596e09f0
MD5 b7700881a09a75177be9775827c56ebf
BLAKE2b-256 dcd0c01fe98a80baf446cad660d0419046fb9ab87f4c1e6d823b1342f887a075

See more details on using hashes here.

File details

Details for the file pyfastx-2.2.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyfastx-2.2.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a232438fd66a9fc4675faff5f5f332e4cfc97dc610bae59ca2abb003741c2704
MD5 feef43f9f86df998dbbb8db8a9933b3f
BLAKE2b-256 9004b2e70f2ae19a82b23baedc76ce5c824b47e7f6d3e2109b7ec7ac5e0b4c69

See more details on using hashes here.

File details

Details for the file pyfastx-2.2.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pyfastx-2.2.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 681.6 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.8

File hashes

Hashes for pyfastx-2.2.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 799ed40ef08a8818d7ad34cf255c5b1c458057429373dba597d99e54acddb641
MD5 8d2cf2bb8ef72d4a085d88785c4d2192
BLAKE2b-256 ebd01ccc2c734efa5ec234189f79b7286bb17d0f77789cc0b1f208bfb7e959fb

See more details on using hashes here.

File details

Details for the file pyfastx-2.2.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: pyfastx-2.2.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 574.9 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.8

File hashes

Hashes for pyfastx-2.2.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 c679924c6767de266cea87337c392fa1ae87998f30f5a5c021f626c918065c66
MD5 6f8854c9eeca1536d7253de541bb7a2c
BLAKE2b-256 9b8508c3af8f4ed536feeff31104afaa725f7369e40303ab84311fea43f9164b

See more details on using hashes here.

File details

Details for the file pyfastx-2.2.0-cp37-cp37m-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pyfastx-2.2.0-cp37-cp37m-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 7e06d13bbeafe1185e66aaa187523aa1ff886aa942793c569724604983bf8a02
MD5 7b0f0b2007089c49491fa9805672a5cb
BLAKE2b-256 e4cbf70b04651f35ad603f8308f1dfa89b36d020b3468a4ee5bca0c2ebcb232a

See more details on using hashes here.

File details

Details for the file pyfastx-2.2.0-cp37-cp37m-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for pyfastx-2.2.0-cp37-cp37m-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 4e76d800c022537aecd60b35ea21971b5827888eddc3926689f054224bc2d559
MD5 d0bca63d23419911654efc20bc8abffd
BLAKE2b-256 1cc08949bbee348efbb378f8d360c33a821d655cbb51ca9481cc52ea8d75b08d

See more details on using hashes here.

File details

Details for the file pyfastx-2.2.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyfastx-2.2.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 332160bb7d4e5e8e15a192a4bc18348b829cf73d478bb6f5cb5391cdf3527c6c
MD5 f4dfceeff033181762dfd330fa9aeb8b
BLAKE2b-256 6a746c5c72c9ea971a32e6f12f59f0d1abae2359cdc54a22ac619392d9c01955

See more details on using hashes here.

File details

Details for the file pyfastx-2.2.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyfastx-2.2.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 3e3188ca7d0509a9c2967dda41ea7d9240d84420d12cf74553b614d1d59faf62
MD5 86162918b74cd77ccb0e8b9a139905ec
BLAKE2b-256 426bffedb112af0c02799befc6e40f382e1167e59d6c51a5bb3013c1bf90efd5

See more details on using hashes here.

File details

Details for the file pyfastx-2.2.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyfastx-2.2.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d42690ffe1027faccbadd875c072b0981e718b6dd77ae596763f717859f9fb84
MD5 cd9f4d7dc2190ed737e81aa8efa5de48
BLAKE2b-256 fdfc9050b272c04e4d13c48ebc00e00d5704aabe7d21630de0cf841f26a32470

See more details on using hashes here.

File details

Details for the file pyfastx-2.2.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: pyfastx-2.2.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 729.9 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.8

File hashes

Hashes for pyfastx-2.2.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 33599de576eba4a709b78d98eb6fec57b57b4fdb78c9cf18c659670f9779023c
MD5 ecead1fda0decffb07247462242771e5
BLAKE2b-256 2939ee17cf5a67a8cb833171edc6c740cbedac73fc66beb170a0e523c4d16913

See more details on using hashes here.

File details

Details for the file pyfastx-2.2.0-cp36-cp36m-win32.whl.

File metadata

  • Download URL: pyfastx-2.2.0-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 608.1 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.8

File hashes

Hashes for pyfastx-2.2.0-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 80126e5f7d08e297fd577f8ccdd52428756b2f41748dacd6a520f37fc52f03cf
MD5 182896cbd50d645777e723e70fc6123f
BLAKE2b-256 35b20a00f2da944ee336e84640b0dead796b92ef00c8f19107e5680a2ee27639

See more details on using hashes here.

File details

Details for the file pyfastx-2.2.0-cp36-cp36m-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pyfastx-2.2.0-cp36-cp36m-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 54b8de68e667460b59e4e52970ba6e015f0fa08f413b90407a29b1ff1761b882
MD5 807dfbcd601c18c504df4075a23ee574
BLAKE2b-256 fee03ea24dfb0c0ff5757b7fe6c63c20ae22dc96a49a85eab0f7c4c5fd8d24cb

See more details on using hashes here.

File details

Details for the file pyfastx-2.2.0-cp36-cp36m-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for pyfastx-2.2.0-cp36-cp36m-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 46a934caa1fa17342223b3aab59a562c5aac63bb403af344062557c0edd1c26b
MD5 161263d3b6b32f1229cb9bc193115aab
BLAKE2b-256 8f15e37bc2620fa490fc2e8e1cae9a7eaf04c1f4f85cc6ad0b3b0087507943b1

See more details on using hashes here.

File details

Details for the file pyfastx-2.2.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyfastx-2.2.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1ad8439992277369b1e73897f0db4db889c55b03b8b9ea901aa67f9913688167
MD5 a7da14eb053a55daf2627b00f65c097a
BLAKE2b-256 557ae82f92fbdfdd21d8a5bec8e9ea7ed328add65f1007b7ce59cc6eeea34a37

See more details on using hashes here.

File details

Details for the file pyfastx-2.2.0-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyfastx-2.2.0-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 c930296d2261ce7d7cfc1cd7db895f7e7ee83292c298069dbc7fb862c6257a18
MD5 1a9289856adaa02d094e5c0f47e95a2c
BLAKE2b-256 325d42dea4192be80668aa5e9d934c8440b1684eda2e620468ae7466a2250396

See more details on using hashes here.

File details

Details for the file pyfastx-2.2.0-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyfastx-2.2.0-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 105f222c159bfd744a9ab54044c3a647c164dd413ed9dac69ec1d220a8d2c0e3
MD5 c64c2d7f2179faebaf1edf8ac67cf909
BLAKE2b-256 359e5cf17c1db65241bfe3a5d08efb4f45a82ca6e16d7f4285004a039d2d60bf

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page