Skip to main content

Pyomo: Python Optimization Modeling Objects

Project description

a COIN-OR project

Pyomo Overview

Pyomo is a Python-based open-source software package that supports a diverse set of optimization capabilities for formulating and analyzing optimization models. Pyomo can be used to define symbolic problems, create concrete problem instances, and solve these instances with standard solvers. Pyomo supports a wide range of problem types, including:

  • Linear programming
  • Quadratic programming
  • Nonlinear programming
  • Mixed-integer linear programming
  • Mixed-integer quadratic programming
  • Mixed-integer nonlinear programming
  • Mixed-integer stochastic programming
  • Generalized disjunctive programming
  • Differential algebraic equations
  • Mathematical programming with equilibrium constraints
  • Constraint programming

Pyomo supports analysis and scripting within a full-featured programming language. Further, Pyomo has also proven an effective framework for developing high-level optimization and analysis tools. For example, the mpi-sppy package provides generic solvers for stochastic programming. mpi-sppy leverages the fact that Pyomo's modeling objects are embedded within a full-featured high-level programming language, which allows for transparent parallelization of subproblems using Python parallel communication libraries.

Pyomo was formerly released as the Coopr software library.

Pyomo is available under the BSD License - see the LICENSE.md file.

Pyomo is currently tested with the following Python implementations:

  • CPython: 3.9, 3.10, 3.11, 3.12, 3.13
  • PyPy: 3.10

Testing and support policy:

At the time of the first Pyomo release after the end-of-life of a minor Python version, we will remove testing for that Python version.

Installation

PyPI PyPI version PyPI downloads

pip install pyomo

Anaconda Anaconda version Anaconda downloads

conda install -c conda-forge pyomo

Tutorials and Examples

Getting Help

To get help from the Pyomo community ask a question on one of the following:

Developers

Pyomo development moved to this repository in June 2016 from Sandia National Laboratories. Developer discussions are hosted by Google Groups.

The Pyomo Development team holds weekly coordination meetings on Tuesdays 12:30 - 14:00 (MT). Please contact wg-pyomo@sandia.gov to request call-in information.

By contributing to this software project, you are agreeing to the following terms and conditions for your contributions:

  1. You agree your contributions are submitted under the BSD license.
  2. You represent you are authorized to make the contributions and grant the license. If your employer has rights to intellectual property that includes your contributions, you represent that you have received permission to make contributions and grant the required license on behalf of that employer.

Related Packages

See https://pyomo.readthedocs.io/en/latest/related_packages.html.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyomo-6.9.2.tar.gz (2.9 MB view details)

Uploaded Source

Built Distributions

pyomo-6.9.2-py3-none-any.whl (3.8 MB view details)

Uploaded Python 3

pyomo-6.9.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

pyomo-6.9.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.2 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ ARM64

pyomo-6.9.2-cp313-cp313-macosx_11_0_arm64.whl (4.1 MB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

pyomo-6.9.2-cp313-cp313-macosx_10_13_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.13 macOS 10.13+ x86-64

pyomo-6.9.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pyomo-6.9.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

pyomo-6.9.2-cp312-cp312-macosx_11_0_arm64.whl (4.1 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

pyomo-6.9.2-cp312-cp312-macosx_10_13_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.12 macOS 10.13+ x86-64

pyomo-6.9.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pyomo-6.9.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pyomo-6.9.2-cp311-cp311-macosx_11_0_arm64.whl (4.1 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyomo-6.9.2-cp311-cp311-macosx_10_9_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyomo-6.9.2-cp310-cp310-win_arm64.whl (5.0 MB view details)

Uploaded CPython 3.10 Windows ARM64

pyomo-6.9.2-cp310-cp310-win_amd64.whl (5.1 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyomo-6.9.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyomo-6.9.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pyomo-6.9.2-cp310-cp310-macosx_11_0_arm64.whl (5.5 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyomo-6.9.2-cp310-cp310-macosx_10_9_x86_64.whl (5.7 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyomo-6.9.2-cp39-cp39-win_arm64.whl (5.0 MB view details)

Uploaded CPython 3.9 Windows ARM64

pyomo-6.9.2-cp39-cp39-win_amd64.whl (5.1 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyomo-6.9.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pyomo-6.9.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pyomo-6.9.2-cp39-cp39-macosx_11_0_arm64.whl (5.5 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyomo-6.9.2-cp39-cp39-macosx_10_9_x86_64.whl (5.7 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file pyomo-6.9.2.tar.gz.

File metadata

  • Download URL: pyomo-6.9.2.tar.gz
  • Upload date:
  • Size: 2.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.2

File hashes

Hashes for pyomo-6.9.2.tar.gz
Algorithm Hash digest
SHA256 81b2b14ea619244824e1c547cc12602fe9a6e19309cbf0742868c5b1ef37cb35
MD5 2da28eb0377a9a7967a4efe374ccd5e6
BLAKE2b-256 536984bbedd016eb8a4ab2bcc9dbffd346b266ff631d44552baea01b87862555

See more details on using hashes here.

File details

Details for the file pyomo-6.9.2-py3-none-any.whl.

File metadata

  • Download URL: pyomo-6.9.2-py3-none-any.whl
  • Upload date:
  • Size: 3.8 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.2

File hashes

Hashes for pyomo-6.9.2-py3-none-any.whl
Algorithm Hash digest
SHA256 13ebb2f974f97afa626c2712d4f27e09a1c3d18ca11755676b743504a76e5161
MD5 6f57390eac3741c8412f321e06217c32
BLAKE2b-256 7f880a07233e39357d3d620186485b927074d6d0ae0f64ad72cc5222ae05844e

See more details on using hashes here.

File details

Details for the file pyomo-6.9.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyomo-6.9.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 16122a46beeff66f98f03a0291058bb956796da1fd93c82fb9c41336e3f2912f
MD5 3683167b26e57398abc5a475b6b0d0c5
BLAKE2b-256 9f1b9929f2e8573b3486ea9fdb1d6b9018fe7199c64d96bf98e2f16cae725e60

See more details on using hashes here.

File details

Details for the file pyomo-6.9.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyomo-6.9.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 74776a900757c47b4269e4461766925e7cd4eb8f34a8565abfdec171e3fd73ed
MD5 c4b40c4d3c9020237ebdc8a9834f5b98
BLAKE2b-256 a76e575252f1cd70a39dc718f93235e1ad7d25bfbf8e558ac116a95c55139226

See more details on using hashes here.

File details

Details for the file pyomo-6.9.2-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyomo-6.9.2-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 58d830239f193d9f0a272602a35d1d1e39e72cac9ef26f7d88a0564862d56b2c
MD5 c80905a4c21cd97630330087ec8699a2
BLAKE2b-256 c84e25d6eae73a8c4636fd8ac6e4a4f7d636d091a3aa4bc75ce3074c17e735c3

See more details on using hashes here.

File details

Details for the file pyomo-6.9.2-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pyomo-6.9.2-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 f5f50e8247ffe2b26c44c496b2324b255b53e2d663d2f3f7db62ee376acfe9b2
MD5 33e5dfb4e441c21078b4fd027dec4f6b
BLAKE2b-256 dc38efe3c09a335869fa4d9a68f83ed207e73e8594eb4cccb753703ae4ec7d6b

See more details on using hashes here.

File details

Details for the file pyomo-6.9.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyomo-6.9.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7d890f67053d10d89a3a2b8bc3901dc7d926fbf225b4bd219167c00f9550a5ff
MD5 a4843e87bd6a5b77268ca944cf451b4b
BLAKE2b-256 002acd77620274a8c7053d637aa6cdbd76427f53217432f07aaf41110bc40a60

See more details on using hashes here.

File details

Details for the file pyomo-6.9.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyomo-6.9.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7d91d84c0632d98e417313c00612be87d04e59cc7056308b40901c4607bc206a
MD5 0a00038e61f939c440d640265440e187
BLAKE2b-256 8500894a72c888791dd381d179c43c52bf2138e71603fb970d78608eaa760c9f

See more details on using hashes here.

File details

Details for the file pyomo-6.9.2-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyomo-6.9.2-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 afd6944ff800554944fe5d5bc07d071c69c5d96df22b1edac4f784d3fbe2ff37
MD5 282974d20d4c0de4f5b10417d5eb9827
BLAKE2b-256 85504b7f748c9983b39f4f8cabded63b17677e79211ac5238b6399d21c4b5b3b

See more details on using hashes here.

File details

Details for the file pyomo-6.9.2-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pyomo-6.9.2-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 3a2f80da2afa3f6eadd17f9d897b15459c91b299325aa5b788f961e28d2802ab
MD5 263676aa4d9ac375424fed95fbb31066
BLAKE2b-256 61db67f81a488173406b71cc8e2bcdb92b4598377a791d598ed5f540c86b2c8a

See more details on using hashes here.

File details

Details for the file pyomo-6.9.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyomo-6.9.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 305229db491272ff7292c1947ee45beeadf275dbcbc0434466507ccfe6b1a0da
MD5 b40751835fe51f98cf4049f96f649b51
BLAKE2b-256 fa4d55662c7a201640fde707c025c81fff9c145a4407f9be97340df85a697326

See more details on using hashes here.

File details

Details for the file pyomo-6.9.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyomo-6.9.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 61697786f90c9d8491ba94f1e6b04a9f72cc61e8ad1b589451e8c30a0f08f2d7
MD5 425e6fa35fe13bb971fe5bea67d81aba
BLAKE2b-256 38203fa081b68704f9d39569492207d55945f3ba84cb9e45611195b6d3370e6f

See more details on using hashes here.

File details

Details for the file pyomo-6.9.2-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyomo-6.9.2-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ba805181125e7cce40e9b5196e6e64dfabcafe89cf68351f33397a989066bea8
MD5 c1b77bfe77b076bdaa3e2be43dbdfca0
BLAKE2b-256 9599e5eaf84a910ce93201922de4bb6e742aa99a468de8cadd15520a66ff466c

See more details on using hashes here.

File details

Details for the file pyomo-6.9.2-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyomo-6.9.2-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f505b648e09a66c95054466b9e0f8462dfd4c3a8d30343e4d575edd9ace2b65c
MD5 cb18e43ee1b0e6042e88221e98f6cb0d
BLAKE2b-256 b676266c2b57cd87b3405bb6b19fd9c3299182f9134d5a2a625f1362ef1510c0

See more details on using hashes here.

File details

Details for the file pyomo-6.9.2-cp310-cp310-win_arm64.whl.

File metadata

  • Download URL: pyomo-6.9.2-cp310-cp310-win_arm64.whl
  • Upload date:
  • Size: 5.0 MB
  • Tags: CPython 3.10, Windows ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.2

File hashes

Hashes for pyomo-6.9.2-cp310-cp310-win_arm64.whl
Algorithm Hash digest
SHA256 a2c92c8533b4797d08513e944ea32ad862308b8d6d3c4805dff183bb59d65b95
MD5 7fb5fec8bda37a787c9306e22cf0762d
BLAKE2b-256 38782dc7f8f17e34ee6c91911cb193dcad2e758c5db34029aa99a66aa3be32a6

See more details on using hashes here.

File details

Details for the file pyomo-6.9.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pyomo-6.9.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 5.1 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.2

File hashes

Hashes for pyomo-6.9.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 3df7548815ee4639600668808da4239e43263005ce55d94357053cf8fb0d6454
MD5 b5e5dc0fd90af6a6f412b897a8590bd8
BLAKE2b-256 9e3742d58dc4e1d1e99608399751f5ee18c211d96c3ef478497afb12038fbd41

See more details on using hashes here.

File details

Details for the file pyomo-6.9.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyomo-6.9.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 120c84a895803af9b37bfd3955fefcd484b005477ec20e9cacf7ed0dfa9a4680
MD5 1f62662b9e84bd8db4d693d325a8efe6
BLAKE2b-256 210c920b57c3ca07b3fb214ba8cc39f0e638144822ba4deb9e20ddf8c88a5912

See more details on using hashes here.

File details

Details for the file pyomo-6.9.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyomo-6.9.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 870055e0aab64d814862c6e59f7f267e6dc5739f4714789452d584a6399ee91a
MD5 6ac6e9b1afa7c407164ca133e833c19a
BLAKE2b-256 94a1c84a2e3c0a9c3f04605f105b048d1c9d3ca66880ebd3d8b6e3f3c72b26da

See more details on using hashes here.

File details

Details for the file pyomo-6.9.2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyomo-6.9.2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 64e491759e370272597b57fe33b20cafb47452019ab60811082ee5691dd61857
MD5 e33d6f4579271381d6db4770d0452957
BLAKE2b-256 c6c4e3bef6632094baa7fe10887609d9528751b226c1f5e0a13ffca86b31ab44

See more details on using hashes here.

File details

Details for the file pyomo-6.9.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyomo-6.9.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2574b833784551bb2ee45b3f371d7cf5589f5b2a4864920780c1ba33293bd4df
MD5 dd0559ae00157e52d8fc33d5321a16f1
BLAKE2b-256 b569f712dc53897e85485b4e4528202c61af0db6866ae01fe1f3f8e17920f72b

See more details on using hashes here.

File details

Details for the file pyomo-6.9.2-cp39-cp39-win_arm64.whl.

File metadata

  • Download URL: pyomo-6.9.2-cp39-cp39-win_arm64.whl
  • Upload date:
  • Size: 5.0 MB
  • Tags: CPython 3.9, Windows ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.2

File hashes

Hashes for pyomo-6.9.2-cp39-cp39-win_arm64.whl
Algorithm Hash digest
SHA256 5b69f2ca7d055e29dc7fb1c8d46e1512c69fd7b052cf71e27ba4d26ecf4ef977
MD5 a18d8fe2d478cf34bf9d2de763a9f228
BLAKE2b-256 895a675eb6c92d9129e5e5d831ff2050d1db6c78c721eca54c69cf74e956db87

See more details on using hashes here.

File details

Details for the file pyomo-6.9.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pyomo-6.9.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 5.1 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.2

File hashes

Hashes for pyomo-6.9.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 86fdaf7166af0468a6034a054fe86df4169476ebaab4414a5dc654ba8fe74f4a
MD5 a825854c488ab5fe4a2267c522670fa6
BLAKE2b-256 ef05abfa155df6d3cf6c826176e6df5d2d9ba58fc0f6bb29d57112c94f29146a

See more details on using hashes here.

File details

Details for the file pyomo-6.9.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyomo-6.9.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1db5238384c556cc69f757e1a906aaaffe394c26d1816392a2a4cbb60cb31305
MD5 e465f22f1a8b1ae31dd8666af929862d
BLAKE2b-256 b09eaea213701a58ffe2c70a577505d406e4a781aaaf4f8846e1a307073fbe17

See more details on using hashes here.

File details

Details for the file pyomo-6.9.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyomo-6.9.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b06e9ac1d64efe36d41ce45190f646c02a6d6529bad915dd9ce4bad2a2a91ef6
MD5 ddb70a8d7d7ffd588e3e1ae735939962
BLAKE2b-256 3f5ae2051fdb0d433d3a5d559e9b6085cf957c57edcb9800c43be05f9f76fd9e

See more details on using hashes here.

File details

Details for the file pyomo-6.9.2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyomo-6.9.2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 40adc03fd215655d0be2abbbbc14c0f7da6acd2448b2e86ae81260e0bd99935f
MD5 e1f3e9200025d02a9123e4811da3bca0
BLAKE2b-256 b69c6338e9890c83ba31258e7cb958f0a6fbc583c9f050711c56997e694f7527

See more details on using hashes here.

File details

Details for the file pyomo-6.9.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyomo-6.9.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c3d0cb010c23a6839ebe46e22db9fd7c4705a2ef00860c6712eaa2efd5bf5026
MD5 1493098f3da04224673c4af6b536da61
BLAKE2b-256 d7107139ed1569cba7be5bc351055854c8e8b341b75211c6bfb122372a9a248a

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page