Skip to main content

Client library for the Qdrant vector search engine

Project description

Qdrant

Python Client library for the Qdrant vector search engine.

PyPI version OpenAPI Docs Apache 2.0 License Discord Roadmap 2025

Python Qdrant Client

Client library and SDK for the Qdrant vector search engine.

Library contains type definitions for all Qdrant API and allows to make both Sync and Async requests.

Client allows calls for all Qdrant API methods directly. It also provides some additional helper methods for frequently required operations, e.g. initial collection uploading.

See QuickStart for more details!

Installation

pip install qdrant-client

Features

  • Type hints for all API methods
  • Local mode - use same API without running server
  • REST and gRPC support
  • Minimal dependencies
  • Extensive Test Coverage

Local mode

Qdrant

Python client allows you to run same code in local mode without running Qdrant server.

Simply initialize client like this:

from qdrant_client import QdrantClient

client = QdrantClient(":memory:")
# or
client = QdrantClient(path="path/to/db")  # Persists changes to disk

Local mode is useful for development, prototyping and testing.

  • You can use it to run tests in your CI/CD pipeline.
  • Run it in Colab or Jupyter Notebook, no extra dependencies required. See an example
  • When you need to scale, simply switch to server mode.

Fast Embeddings + Simpler API

pip install qdrant-client[fastembed]

FastEmbed is a library for creating fast vector embeddings on CPU. It is based on ONNX Runtime and allows to run inference both on CPU and GPU.

Qdrant Client can use FastEmbed to create embeddings and upload them to Qdrant. This allows to simplify API and make it more intuitive.

from qdrant_client import QdrantClient, models

# running qdrant in local mode suitable for experiments
client = QdrantClient(":memory:")  # or QdrantClient(path="path/to/db") for local mode and persistent storage

model_name = "sentence-transformers/all-MiniLM-L6-v2"
payload = [
    {"document": "Qdrant has Langchain integrations", "source": "Langchain-docs", },
    {"document": "Qdrant also has Llama Index integrations", "source": "LlamaIndex-docs"},
]
docs = [models.Document(text=data["document"], model=model_name) for data in payload]
ids = [42, 2]

client.create_collection(
    "demo_collection",
    vectors_config=models.VectorParams(
        size=client.get_embedding_size(model_name), distance=models.Distance.COSINE)
)

client.upload_collection(
    collection_name="demo_collection",
    vectors=docs,
    ids=ids,
    payload=payload,
)

search_result = client.query_points(
    collection_name="demo_collection",
    query=models.Document(text="This is a query document", model=model_name)
).points
print(search_result)

FastEmbed can also utilise GPU for faster embeddings. To enable GPU support, install

pip install 'qdrant-client[fastembed-gpu]'

In order to set GPU, extend documents from the previous example with options.

models.Document(text="To be computed on GPU", model=model_name, options={"cuda": True})

Note: fastembed-gpu and fastembed are mutually exclusive. You can only install one of them.

If you previously installed fastembed, you might need to start from a fresh environment to install fastembed-gpu.

Connect to Qdrant server

To connect to Qdrant server, simply specify host and port:

from qdrant_client import QdrantClient

client = QdrantClient(host="localhost", port=6333)
# or
client = QdrantClient(url="http://localhost:6333")

You can run Qdrant server locally with docker:

docker run -p 6333:6333 qdrant/qdrant:latest

See more launch options in Qdrant repository.

Connect to Qdrant cloud

You can register and use Qdrant Cloud to get a free tier account with 1GB RAM.

Once you have your cluster and API key, you can connect to it like this:

from qdrant_client import QdrantClient

qdrant_client = QdrantClient(
    url="https://xxxxxx-xxxxx-xxxxx-xxxx-xxxxxxxxx.us-east.aws.cloud.qdrant.io:6333",
    api_key="<your-api-key>",
)

Examples

Create a new collection

from qdrant_client.models import Distance, VectorParams

client.create_collection(
    collection_name="my_collection",
    vectors_config=VectorParams(size=100, distance=Distance.COSINE),
)

Insert vectors into a collection

import numpy as np

from qdrant_client.models import PointStruct

vectors = np.random.rand(100, 100)
# NOTE: consider splitting the data into chunks to avoid hitting the server's payload size limit
# or use `upload_collection` or `upload_points` methods which handle this for you
# WARNING: uploading points one-by-one is not recommended due to requests overhead
client.upsert(
    collection_name="my_collection",
    points=[
        PointStruct(
            id=idx,
            vector=vector.tolist(),
            payload={"color": "red", "rand_number": idx % 10}
        )
        for idx, vector in enumerate(vectors)
    ]
)

Search for similar vectors

query_vector = np.random.rand(100)
hits = client.query_points(
    collection_name="my_collection",
    query=query_vector,
    limit=5  # Return 5 closest points
)

Search for similar vectors with filtering condition

from qdrant_client.models import Filter, FieldCondition, Range

hits = client.query_points(
    collection_name="my_collection",
    query=query_vector,
    query_filter=Filter(
        must=[  # These conditions are required for search results
            FieldCondition(
                key='rand_number',  # Condition based on values of `rand_number` field.
                range=Range(
                    gte=3  # Select only those results where `rand_number` >= 3
                )
            )
        ]
    ),
    limit=5  # Return 5 closest points
)

See more examples in our Documentation!

gRPC

To enable (typically, much faster) collection uploading with gRPC, use the following initialization:

from qdrant_client import QdrantClient

client = QdrantClient(host="localhost", grpc_port=6334, prefer_grpc=True)

Async client

Starting from version 1.6.1, all python client methods are available in async version.

To use it, just import AsyncQdrantClient instead of QdrantClient:

import asyncio

import numpy as np

from qdrant_client import AsyncQdrantClient, models


async def main():
    # Your async code using QdrantClient might be put here
    client = AsyncQdrantClient(url="http://localhost:6333")

    await client.create_collection(
        collection_name="my_collection",
        vectors_config=models.VectorParams(size=10, distance=models.Distance.COSINE),
    )

    await client.upsert(
        collection_name="my_collection",
        points=[
            models.PointStruct(
                id=i,
                vector=np.random.rand(10).tolist(),
            )
            for i in range(100)
        ],
    )

    res = await client.query_points(
        collection_name="my_collection",
        query=np.random.rand(10).tolist(),  # type: ignore
        limit=10,
    )

    print(res)

asyncio.run(main())

Both, gRPC and REST API are supported in async mode. More examples can be found here.

Development

This project uses git hooks to run code formatters.

Set up hooks with pre-commit install before making contributions.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

qdrant_client-1.14.3.tar.gz (286.8 kB view details)

Uploaded Source

Built Distribution

qdrant_client-1.14.3-py3-none-any.whl (329.0 kB view details)

Uploaded Python 3

File details

Details for the file qdrant_client-1.14.3.tar.gz.

File metadata

  • Download URL: qdrant_client-1.14.3.tar.gz
  • Upload date:
  • Size: 286.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.23

File hashes

Hashes for qdrant_client-1.14.3.tar.gz
Algorithm Hash digest
SHA256 bb899e3e065b79c04f5e47053d59176150c0a5dabc09d7f476c8ce8e52f4d281
MD5 850f9317a132efda2d33255a8c4827e4
BLAKE2b-256 1d563f355f931c239c260b4fe3bd6433ec6c9e6185cd5ae0970fe89d0ca6daee

See more details on using hashes here.

File details

Details for the file qdrant_client-1.14.3-py3-none-any.whl.

File metadata

  • Download URL: qdrant_client-1.14.3-py3-none-any.whl
  • Upload date:
  • Size: 329.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.23

File hashes

Hashes for qdrant_client-1.14.3-py3-none-any.whl
Algorithm Hash digest
SHA256 66faaeae00f9b5326946851fe4ca4ddb1ad226490712e2f05142266f68dfc04d
MD5 5323e500c27a7eea991b6922dcc096f8
BLAKE2b-256 355e8174c845707e60b60b65c58f01e40bbc1d8181b5ff6463f25df470509917

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page