Quantum Machine Learning
Project description
# QML: A Python Toolkit for Quantum Machine Learning [](https://travis-ci.org/qmlcode/qml) [](https://badge.fury.io/py/qml) [](https://zenodo.org/badge/latestdoi/89045103)
QML is a Python2/3-compatible toolkit for representation learning of properties of molecules and solids.
#### Current list of contributors: * Anders S. Christensen (University of Basel) * Felix A. Faber (University of Basel) * Bing Huang (University of Basel) * Lars A. Bratholm (University of Copenhagen) * Alexandre Tkatchenko (University of Luxembourg) * Klaus-Robert Muller (Technische Universität Berlin/Korea University) * O. Anatole von Lilienfeld (University of Basel)
## 1) Citing QML:
Until the preprint is available from arXiv, please cite this GitHub repository as:
AS Christensen, LA Bratholm, FA Faber, B Huang, A Tkatchenko, KR Muller, OA von Lilienfeld (2017) “QML: A Python Toolkit for Quantum Machine Learning” https://github.com/qmlcode/qml
## 2) Get help:
Documentation and installation instruction is found at: http://www.qmlcode.org/
## 3) License:
QML is freely available under the terms of the MIT license.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file qml-0.4.0.18.tar.gz
.
File metadata
- Download URL: qml-0.4.0.18.tar.gz
- Upload date:
- Size: 40.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: Python-urllib/2.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
13ae7c71edaac986bdf4fcfa46ac0fa78196e33f9250974d04e9827960102c0a
|
|
MD5 |
df133c678315410e2a23d15a1817ea17
|
|
BLAKE2b-256 |
39fb66027de928e5d6531bbf2c829dd26b74e27a0400883d9afa13c6e1667776
|