Skip to main content

Generating dense embeddings for proteins using kernel PCA

Project description

Generating dense embeddings for proteins using kernel PCA.

Installation

Install directly from the source with:

$ pip install git+https://jira.iais.fraunhofer.de/stash/scm/meml/protein_vectors.git

Install in development mode with:

$ git clone https://jira.iais.fraunhofer.de/stash/scm/meml/protein_vectors.git
$ cd ratvec
$ pip install -e .

The -e dynamically links the code in the git repository to the Python site-packages so your changes get reflected immediately.

How to Use

ratvec is automatically installs a command line interface. Check it out with

$ ratvec --help

RatVec has four main commands: generate, train, evaluate and optimize:

  1. Generate. Downloads and prepare the SwissProt data set that is showcased in the RatVec paper.

  2. Train. Compute KPCA embeddings on a given data set. Please run the following command to see the arguments:

$ ratvec train --help
  1. Evaluate. Evaluate and optimize KPCA embeddings. Please run the following command to see the arguments:

$ ratvec evaluate --help
  1. Optimize. Evaluate and optimize KPCA embeddings. Please run the following command to see the arguments:

$ ratvec optimize --help

Showcase Dataset

The application presented in the paper (SwissProt dataset [1] used by Boutet et al. [2]) can be downloaded directly from the following website https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/JMFHTN or by running the following command:

$ ratvec generate

References

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ratvec-0.1.0.tar.gz (25.5 kB view details)

Uploaded Source

Built Distribution

ratvec-0.1.0-py3-none-any.whl (35.8 kB view details)

Uploaded Python 3

File details

Details for the file ratvec-0.1.0.tar.gz.

File metadata

  • Download URL: ratvec-0.1.0.tar.gz
  • Upload date:
  • Size: 25.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.2

File hashes

Hashes for ratvec-0.1.0.tar.gz
Algorithm Hash digest
SHA256 1c98046ed0bdb48a53bf4e531cec11c48ed538b7f35bb538a1118baf7affc795
MD5 8744615f63c12ddb7c8fdd0e16f4455b
BLAKE2b-256 1e1faf45fb5524fb2cfedc426b0720c18911f8ab4054548c457959436ea7310b

See more details on using hashes here.

File details

Details for the file ratvec-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: ratvec-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 35.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.2

File hashes

Hashes for ratvec-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 d68ca0b06bb607a1731f6540622f216526bc6f7b81a8441e1e7c0d3a418a5f97
MD5 0af7497f978be581ed19acc55e5d8761
BLAKE2b-256 bfa7bcf77a6f28a519900ae1b80d267e27c0a3ea44542f44c314743bf633bce7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page