Skip to main content

Python wrapper for the LibRaw library

Project description

Linux Build Status Mac OS X Build Status Windows Build Status

rawpy is an easy-to-use Python wrapper for the LibRaw library. It also contains some extra functionality for finding and repairing hot/dead pixels.

API Documentation

Sample code

Load a RAW file and save the postprocessed image using default parameters:

import rawpy
import imageio

path = 'image.nef'
with rawpy.imread(path) as raw:
    rgb = raw.postprocess()
imageio.imsave('default.tiff', rgb)

Save as 16-bit linear image:

with rawpy.imread(path) as raw:
    rgb = raw.postprocess(gamma=(1,1), no_auto_bright=True, output_bps=16)
imageio.imsave('linear.tiff', rgb)

Find bad pixels using multiple RAW files and repair them:

import rawpy.enhance

paths = ['image1.nef', 'image2.nef', 'image3.nef']
bad_pixels = rawpy.enhance.find_bad_pixels(paths)

for path in paths:
    with rawpy.imread(path) as raw:
        rawpy.enhance.repair_bad_pixels(raw, bad_pixels, method='median')
        rgb = raw.postprocess()
    imageio.imsave(path + '.tiff', rgb)

NumPy Dependency

Before installing rawpy, you need to have numpy installed. You can check your numpy version with pip freeze.

The minimum supported numpy version depends on your Python version:

Python

numpy

2.7 - 3.3

>= 1.7.1

3.4

>= 1.8.1

3.5

>= 1.9.3

You can install numpy with pip install numpy.

Installation on Windows and Mac OS X

Binaries are provided for Python 2.7, 3.3, 3.4 and 3.5 for both 32 and 64 bit. These can be installed with a simple pip install --use-wheel rawpy (or just pip install rawpy if using pip >= 1.5).

Installation on Linux

You need to have the LibRaw library installed to use this wrapper.

On Ubuntu, you can get (an outdated) version with:

sudo apt-get install libraw-dev

Or install the latest release version from the source repository:

git clone git://github.com/LibRaw/LibRaw.git libraw
git clone git://github.com/LibRaw/LibRaw-cmake.git libraw-cmake
cd libraw
git checkout 0.17.1
cp -R ../libraw-cmake/* .
cmake .
sudo make install

After that, it’s the usual pip install rawpy.

If you get the error “ImportError: libraw.so: cannot open shared object file: No such file or directory” when trying to use rawpy, then do the following:

echo "/usr/local/lib" | sudo tee /etc/ld.so.conf.d/99local.conf
sudo ldconfig

The LibRaw library is installed in /usr/local/lib and apparently this folder is not searched for libraries by default in some Linux distributions.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

rawpy-0.6.0-cp35-cp35m-win_amd64.whl (471.3 kB view details)

Uploaded CPython 3.5mWindows x86-64

rawpy-0.6.0-cp35-cp35m-win32.whl (419.7 kB view details)

Uploaded CPython 3.5mWindows x86

rawpy-0.6.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (863.2 kB view details)

Uploaded CPython 3.5mmacOS 10.10+ Intel (x86-64, i386)macOS 10.10+ x86-64macOS 10.6+ Intel (x86-64, i386)macOS 10.9+ Intel (x86-64, i386)macOS 10.9+ x86-64

rawpy-0.6.0-cp34-cp34m-win_amd64.whl (310.6 kB view details)

Uploaded CPython 3.4mWindows x86-64

rawpy-0.6.0-cp34-cp34m-win32.whl (278.3 kB view details)

Uploaded CPython 3.4mWindows x86

rawpy-0.6.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (863.4 kB view details)

Uploaded CPython 3.4mmacOS 10.10+ Intel (x86-64, i386)macOS 10.10+ x86-64macOS 10.6+ Intel (x86-64, i386)macOS 10.9+ Intel (x86-64, i386)macOS 10.9+ x86-64

rawpy-0.6.0-cp33-cp33m-win_amd64.whl (310.6 kB view details)

Uploaded CPython 3.3mWindows x86-64

rawpy-0.6.0-cp33-cp33m-win32.whl (278.2 kB view details)

Uploaded CPython 3.3mWindows x86

rawpy-0.6.0-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (862.8 kB view details)

Uploaded CPython 3.3mmacOS 10.10+ Intel (x86-64, i386)macOS 10.10+ x86-64macOS 10.6+ Intel (x86-64, i386)macOS 10.9+ Intel (x86-64, i386)macOS 10.9+ x86-64

rawpy-0.6.0-cp27-cp27m-win_amd64.whl (337.9 kB view details)

Uploaded CPython 2.7mWindows x86-64

rawpy-0.6.0-cp27-cp27m-win32.whl (301.2 kB view details)

Uploaded CPython 2.7mWindows x86

rawpy-0.6.0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (863.7 kB view details)

Uploaded CPython 2.7mmacOS 10.10+ Intel (x86-64, i386)macOS 10.10+ x86-64macOS 10.6+ Intel (x86-64, i386)macOS 10.9+ Intel (x86-64, i386)macOS 10.9+ x86-64

File details

Details for the file rawpy-0.6.0-cp35-cp35m-win_amd64.whl.

File metadata

File hashes

Hashes for rawpy-0.6.0-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 6debc8fb3222dcb422a38271517a92fac9316d39421ff87411034d780f034c1f
MD5 3e9cfef293c4c10b75c434126911fc17
BLAKE2b-256 d71641dcb46f5fbe4c85f39fd29c70bceebe1cba3ed93e1d72b9dee3caedb70c

See more details on using hashes here.

File details

Details for the file rawpy-0.6.0-cp35-cp35m-win32.whl.

File metadata

File hashes

Hashes for rawpy-0.6.0-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 4f216198739432d0b35f6d8b9ecb3114103ac3a9df9a52b43021536acf262613
MD5 8b28817859b0a934d61b9237af810350
BLAKE2b-256 bb8eb7c7487e74eb28f7ff6884cea95e6f4e9ecced43fb0354881309b301087b

See more details on using hashes here.

File details

Details for the file rawpy-0.6.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for rawpy-0.6.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 1c941b71b3c598219bc100e9f3aef646f572dcd73361bce870b24e4d44b1633d
MD5 371c670921ff869dc93f544fabe478e5
BLAKE2b-256 9d82384f86d2dfd8ea7fd2799b5293001a73f8f56cc64fa0d55e52b83dba7f67

See more details on using hashes here.

File details

Details for the file rawpy-0.6.0-cp34-cp34m-win_amd64.whl.

File metadata

File hashes

Hashes for rawpy-0.6.0-cp34-cp34m-win_amd64.whl
Algorithm Hash digest
SHA256 bc0c64e19d1c82078bf6aa1a410d13ac1262ef09d7efc5da6d30a7f0b1ae9634
MD5 916310f507880afee6baab34a8444cfe
BLAKE2b-256 5a5355898eede1e65501abc0792d43b95144e71c101c5049d42f15b212a6be3f

See more details on using hashes here.

File details

Details for the file rawpy-0.6.0-cp34-cp34m-win32.whl.

File metadata

File hashes

Hashes for rawpy-0.6.0-cp34-cp34m-win32.whl
Algorithm Hash digest
SHA256 0f02521becca7d8edaaa33b84bfa60514ad4c18730e0e12820e9617c6adcbb28
MD5 8acde48d709c644da40acfe70a03a4fd
BLAKE2b-256 60d36607852b5f9053f69e528e3de8809d5bc4adee6daa6aa6764e77f5702a8e

See more details on using hashes here.

File details

Details for the file rawpy-0.6.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for rawpy-0.6.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 fa7b367f754bd3bc11dc966adf3dbb9bf5b7806b93bf01b5a0c932ae7d29da56
MD5 ec06dd60d3121ce886cc68f337a9e05e
BLAKE2b-256 f9b8c5ee98bf53841b4b02a305019902fe2a959d32185ce65cf833629197a748

See more details on using hashes here.

File details

Details for the file rawpy-0.6.0-cp33-cp33m-win_amd64.whl.

File metadata

File hashes

Hashes for rawpy-0.6.0-cp33-cp33m-win_amd64.whl
Algorithm Hash digest
SHA256 358f61ed7af6d34281dba4bfd06a8f5be0ac5f2b8e16fd4d8acb8a0dc1e67ca1
MD5 76cc36043dbf7dbae368a5168b66bbdf
BLAKE2b-256 0f9870fcafa988cf429d746bf5242be51a87cbf2faa269c20484319bf99316ff

See more details on using hashes here.

File details

Details for the file rawpy-0.6.0-cp33-cp33m-win32.whl.

File metadata

File hashes

Hashes for rawpy-0.6.0-cp33-cp33m-win32.whl
Algorithm Hash digest
SHA256 ef571f12cdf01a60f1020c900f7f05408f868c053ec911cf21b8a7a1a5950cba
MD5 d907523d7736f11c414b06674f39b5cb
BLAKE2b-256 9f95f446fa874c30b34f8c86b621172175cae950e2ca3f1c1cc3d2639b5dd97c

See more details on using hashes here.

File details

Details for the file rawpy-0.6.0-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for rawpy-0.6.0-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 55f980554ac284202954d4d396be4f6087ed097223e69fbb6f9161c49174e77f
MD5 eb343bf5489d3340d2fb847cbb1b9c42
BLAKE2b-256 ec2da1bf351684d07e8a1f51d26e03549190a5bd599be2a51f1a2a753d7712b4

See more details on using hashes here.

File details

Details for the file rawpy-0.6.0-cp27-cp27m-win_amd64.whl.

File metadata

File hashes

Hashes for rawpy-0.6.0-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 b7ca0959ba6ee258a579433b0e30b0f03f404e47cf28b14c7f44b9a27379c004
MD5 3cb91e09d5d87ca51cde522477b18ba5
BLAKE2b-256 74946098167d342e60825945acc369d824fb6ecc1ba9b2d7a39017dabd6f2ba1

See more details on using hashes here.

File details

Details for the file rawpy-0.6.0-cp27-cp27m-win32.whl.

File metadata

File hashes

Hashes for rawpy-0.6.0-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 4d04e9a3fb92b4edeb8cd8f9bf0edc2e5f9ef4c15d485d934ecd479ab0c23cd4
MD5 83a7b0805552f660d4b4a60c067c2cab
BLAKE2b-256 00639683bcbb8a25a1820edd331c06e40b23828bde7378da579cdc76988a2767

See more details on using hashes here.

File details

Details for the file rawpy-0.6.0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for rawpy-0.6.0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 242ecd8d16e1b537ae7cbfa0f227861d730262aadacefd3ebc5324a79431bfc6
MD5 3d0fed70f6510f170304e447d1326519
BLAKE2b-256 954ab91edf1c79c5e88b4ca351547ad2dc7c3082c32a4c8433bd48125e2e0ffb

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page