Skip to main content

Python wrapper for the LibRaw library

Project description

Linux Build Status Mac OS X Build Status Windows Build Status

rawpy is an easy-to-use Python wrapper for the LibRaw library. It also contains some extra functionality for finding and repairing hot/dead pixels.

API Documentation

Sample code

Load a RAW file and save the postprocessed image using default parameters:

import rawpy
import imageio

path = 'image.nef'
with rawpy.imread(path) as raw:
    rgb = raw.postprocess()
imageio.imsave('default.tiff', rgb)

Save as 16-bit linear image:

with rawpy.imread(path) as raw:
    rgb = raw.postprocess(gamma=(1,1), no_auto_bright=True, output_bps=16)
imageio.imsave('linear.tiff', rgb)

Find bad pixels using multiple RAW files and repair them:

import rawpy.enhance

paths = ['image1.nef', 'image2.nef', 'image3.nef']
bad_pixels = rawpy.enhance.find_bad_pixels(paths)

for path in paths:
    with rawpy.imread(path) as raw:
        rawpy.enhance.repair_bad_pixels(raw, bad_pixels, method='median')
        rgb = raw.postprocess()
    imageio.imsave(path + '.tiff', rgb)

NumPy Dependency

Before installing rawpy, you need to have numpy installed. You can check your numpy version with pip freeze.

The minimum supported numpy version depends on your Python version:

Python

numpy

2.7

>= 1.7.1

3.4

>= 1.8.1

3.5

>= 1.9.3

You can install numpy with pip install numpy.

Installation on Windows and Mac OS X

Binaries are provided for Python 2.7, 3.4 and 3.5 for both 32 and 64 bit. These can be installed with a simple pip install --use-wheel rawpy (or just pip install rawpy if using pip >= 1.5).

Installation on Linux

You need to have the LibRaw library installed to use this wrapper.

On Ubuntu, you can get (an outdated) version with:

sudo apt-get install libraw-dev

Or install the latest release version from the source repository:

git clone https://github.com/LibRaw/LibRaw.git libraw
git clone https://github.com/LibRaw/LibRaw-cmake.git libraw-cmake
cd libraw
git checkout 0.18.0
cp -R ../libraw-cmake/* .
cmake .
sudo make install

After that, it’s the usual pip install rawpy.

If you get the error “ImportError: libraw.so: cannot open shared object file: No such file or directory” when trying to use rawpy, then do the following:

echo "/usr/local/lib" | sudo tee /etc/ld.so.conf.d/99local.conf
sudo ldconfig

The LibRaw library is installed in /usr/local/lib (if installed manually) and apparently this folder is not searched for libraries by default in some Linux distributions.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

rawpy-0.8.1-cp35-cp35m-win_amd64.whl (517.8 kB view details)

Uploaded CPython 3.5mWindows x86-64

rawpy-0.8.1-cp35-cp35m-win32.whl (449.2 kB view details)

Uploaded CPython 3.5mWindows x86

rawpy-0.8.1-cp35-cp35m-macosx_10_10_intel.whl (983.3 kB view details)

Uploaded CPython 3.5mmacOS 10.10+ Intel (x86-64, i386)

rawpy-0.8.1-cp34-cp34m-win_amd64.whl (356.7 kB view details)

Uploaded CPython 3.4mWindows x86-64

rawpy-0.8.1-cp34-cp34m-win32.whl (318.4 kB view details)

Uploaded CPython 3.4mWindows x86

rawpy-0.8.1-cp34-cp34m-macosx_10_10_intel.whl (983.5 kB view details)

Uploaded CPython 3.4mmacOS 10.10+ Intel (x86-64, i386)

rawpy-0.8.1-cp27-cp27m-win_amd64.whl (383.6 kB view details)

Uploaded CPython 2.7mWindows x86-64

rawpy-0.8.1-cp27-cp27m-win32.whl (341.2 kB view details)

Uploaded CPython 2.7mWindows x86

rawpy-0.8.1-cp27-cp27m-macosx_10_10_x86_64.whl (984.0 kB view details)

Uploaded CPython 2.7mmacOS 10.10+ x86-64

File details

Details for the file rawpy-0.8.1-cp35-cp35m-win_amd64.whl.

File metadata

File hashes

Hashes for rawpy-0.8.1-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 d6ecf2fef0cee4e78b3695f6dde02f1d6a9ed023f22c2b2a5718c450d9b26fa0
MD5 21c369e24be38c6d47618608141896d1
BLAKE2b-256 30b00104866c887717e9c16c6f6dc401760a941cca0a403bf97238002ef4df2f

See more details on using hashes here.

File details

Details for the file rawpy-0.8.1-cp35-cp35m-win32.whl.

File metadata

File hashes

Hashes for rawpy-0.8.1-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 69edc199fcdeb856038d66473b325361bb166d53a4e5a1531cfca93e32de2cd0
MD5 a3f2b7cc5d542269f5d04a469f700040
BLAKE2b-256 4e06206d3cb3d3a65060efe4b6004af6032b6a08685e0ab562594f9271b0a161

See more details on using hashes here.

File details

Details for the file rawpy-0.8.1-cp35-cp35m-macosx_10_10_intel.whl.

File metadata

File hashes

Hashes for rawpy-0.8.1-cp35-cp35m-macosx_10_10_intel.whl
Algorithm Hash digest
SHA256 88c14915b81988b7627a291548036ad914254ff265e4d105ac61195d16e95ca2
MD5 41073090e7596b9db1f6799c2958d067
BLAKE2b-256 1d3e4351cea0a31e3278b755ad7df4a1cc581bafe7e95be7441d3f0f64a3ab43

See more details on using hashes here.

File details

Details for the file rawpy-0.8.1-cp34-cp34m-win_amd64.whl.

File metadata

File hashes

Hashes for rawpy-0.8.1-cp34-cp34m-win_amd64.whl
Algorithm Hash digest
SHA256 16e9cd5b6e4436736f7473f347f9968d3f25ce71ace0fa2128e1f6c1ed562e87
MD5 9ced14742d54360d92da4c2b342cbfae
BLAKE2b-256 2ffd5ac45bb23e2c5192eb73ef873774e601fd88bed9c3328f69b28ebce8d1a8

See more details on using hashes here.

File details

Details for the file rawpy-0.8.1-cp34-cp34m-win32.whl.

File metadata

File hashes

Hashes for rawpy-0.8.1-cp34-cp34m-win32.whl
Algorithm Hash digest
SHA256 53590cfa269c9d7ac0e9f39e7fd8894db385ea04e6b84a0bbe11491e34dc828a
MD5 e3ce213cb950daf169a9a393ba77cbb2
BLAKE2b-256 5582a44c24d5f360a28b5c6f84ac8cb114855a591fe43a5a00441e5f22775f70

See more details on using hashes here.

File details

Details for the file rawpy-0.8.1-cp34-cp34m-macosx_10_10_intel.whl.

File metadata

File hashes

Hashes for rawpy-0.8.1-cp34-cp34m-macosx_10_10_intel.whl
Algorithm Hash digest
SHA256 55315af829ef45a5ca4ee9e405a8cd595d149691e21ac17fcf5bf1f31afee3c9
MD5 8d8972c60a70f405f04a8695cfb3e2d4
BLAKE2b-256 fb7543fdeb28133a8d29783847a5c38575f114da0e17f1c553ff794b9c4ffc15

See more details on using hashes here.

File details

Details for the file rawpy-0.8.1-cp27-cp27m-win_amd64.whl.

File metadata

File hashes

Hashes for rawpy-0.8.1-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 1e9fd3b02f05b94260a73d44120e9cca13f2786c248cd434a6526c8c7e416aa8
MD5 cecad4972840ebb427b8d7c06c3bfb07
BLAKE2b-256 d5ea3c652cc05e7e89820b28e9c17993ca789c40cef22d3692937ad77ceaaa1b

See more details on using hashes here.

File details

Details for the file rawpy-0.8.1-cp27-cp27m-win32.whl.

File metadata

File hashes

Hashes for rawpy-0.8.1-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 4a357e8ecfb3aca187530982dcb5c6106bc037f0650046fcb5ee37a9b1842a09
MD5 6b5528aa3c7525b5d9626d5f8f7f8845
BLAKE2b-256 9749e52b7235bd124e04ca15f933fce67fd851feefb03eb17107c600c411cbac

See more details on using hashes here.

File details

Details for the file rawpy-0.8.1-cp27-cp27m-macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for rawpy-0.8.1-cp27-cp27m-macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 313a13e3b8faa63bcf7876b8d05a93b59005c02a573d3f7366358c8965d5e835
MD5 b929732c697f7ad99ae5aacd0c14fb8a
BLAKE2b-256 0f2830534f6bb96d9c9f58741d6f10feee44cbe797ccc908db94c14dc99db0d9

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page