Skip to main content

Remove image background

Project description

Rembg

License Hugging Face Spaces Streamlit App Open in Colab RepoMapr

Rembg Logo

Rembg is a tool to remove image backgrounds. It can be used as a CLI, Python library, HTTP server, or Docker container.

If this project has helped you, please consider making a donation.

Sponsors

Unsplash PhotoRoom Remove Background API
https://photoroom.com/api

Fast and accurate background remover API

Requirements

python: >=3.11, <3.14

Installation

Choose one of the following backends based on your hardware:

CPU support

pip install "rembg[cpu]" # for library
pip install "rembg[cpu,cli]" # for library + cli

GPU support (NVIDIA/CUDA)

First, check if your system supports onnxruntime-gpu by visiting onnxruntime.ai and reviewing the installation matrix.

onnxruntime-installation-matrix

If your system is compatible, run:

pip install "rembg[gpu]" # for library
pip install "rembg[gpu,cli]" # for library + cli

Note: NVIDIA GPUs may require onnxruntime-gpu, CUDA, and cudnn-devel. See #668 for details. If rembg[gpu] doesn't work and you can't install CUDA or cudnn-devel, use rembg[cpu] with onnxruntime instead.

GPU support (AMD/ROCm)

ROCm support requires the onnxruntime-rocm package. Install it by following AMD's documentation.

Once onnxruntime-rocm is installed and working, install rembg with ROCm support:

pip install "rembg[rocm]" # for library
pip install "rembg[rocm,cli]" # for library + cli

Usage as a CLI

After installation, you can use rembg by typing rembg in your terminal.

The rembg command has 4 subcommands, one for each input type:

  • i - single files
  • p - folders (batch processing)
  • s - HTTP server
  • b - RGB24 pixel binary stream

You can get help about the main command using:

rembg --help

You can also get help for any subcommand:

rembg <COMMAND> --help

rembg i

Used for processing single files.

Remove background from a remote image:

curl -s http://input.png | rembg i > output.png

Remove background from a local file:

rembg i path/to/input.png path/to/output.png

Specify a model:

rembg i -m u2netp path/to/input.png path/to/output.png

Return only the mask:

rembg i -om path/to/input.png path/to/output.png

Apply alpha matting:

rembg i -a path/to/input.png path/to/output.png

Pass extra parameters (SAM example):

rembg i -m sam -x '{ "sam_prompt": [{"type": "point", "data": [724, 740], "label": 1}] }' examples/plants-1.jpg examples/plants-1.out.png

Pass extra parameters (custom model):

rembg i -m u2net_custom -x '{"model_path": "~/.u2net/u2net.onnx"}' path/to/input.png path/to/output.png

rembg p

Used for batch processing entire folders.

Process all images in a folder:

rembg p path/to/input path/to/output

Watch mode (process new/changed files automatically):

rembg p -w path/to/input path/to/output

rembg s

Used to start an HTTP server.

rembg s --host 0.0.0.0 --port 7000 --log_level info

For complete API documentation, visit: http://localhost:7000/api

Remove background from an image URL:

curl -s "http://localhost:7000/api/remove?url=http://input.png" -o output.png

Remove background from an uploaded image:

curl -s -F file=@/path/to/input.jpg "http://localhost:7000/api/remove" -o output.png

rembg b

Process a sequence of RGB24 images from stdin. This is intended to be used with programs like FFmpeg that output RGB24 pixel data to stdout.

rembg b <width> <height> -o <output_specifier>

Arguments:

Argument Description
width Width of input image(s)
height Height of input image(s)
output_specifier Printf-style specifier for output filenames (e.g., output-%03u.png produces output-000.png, output-001.png, etc.). Omit to write to stdout.

Example with FFmpeg:

ffmpeg -i input.mp4 -ss 10 -an -f rawvideo -pix_fmt rgb24 pipe:1 | rembg b 1280 720 -o folder/output-%03u.png

Note: The width and height must match FFmpeg's output dimensions. The flags -an -f rawvideo -pix_fmt rgb24 pipe:1 are required for FFmpeg compatibility.

Usage as a Library

Input and output as bytes:

from rembg import remove

with open('input.png', 'rb') as i:
    with open('output.png', 'wb') as o:
        input = i.read()
        output = remove(input)
        o.write(output)

Input and output as a PIL image:

from rembg import remove
from PIL import Image

input = Image.open('input.png')
output = remove(input)
output.save('output.png')

Input and output as a NumPy array:

from rembg import remove
import cv2

input = cv2.imread('input.png')
output = remove(input)
cv2.imwrite('output.png', output)

Force output as bytes:

from rembg import remove

with open('input.png', 'rb') as i:
    with open('output.png', 'wb') as o:
        input = i.read()
        output = remove(input, force_return_bytes=True)
        o.write(output)

Batch processing with session reuse (recommended for performance):

from pathlib import Path
from rembg import remove, new_session

session = new_session()

for file in Path('path/to/folder').glob('*.png'):
    input_path = str(file)
    output_path = str(file.parent / (file.stem + ".out.png"))

    with open(input_path, 'rb') as i:
        with open(output_path, 'wb') as o:
            input = i.read()
            output = remove(input, session=session)
            o.write(output)

For more examples, see the examples page.

Usage with Docker

CPU Only

Replace the rembg command with docker run danielgatis/rembg:

docker run -v path/to/input:/rembg danielgatis/rembg i input.png path/to/output/output.png

NVIDIA CUDA GPU Acceleration

Requirements: Your host must have the NVIDIA Container Toolkit installed.

CUDA acceleration requires cudnn-devel, so you need to build the Docker image yourself. See #668 for details.

Build the image:

docker build -t rembg-nvidia-cuda-cudnn-gpu -f Dockerfile_nvidia_cuda_cudnn_gpu .

Note: This image requires ~11GB of disk space (CPU version is ~1.6GB). Models are not included.

Run the container:

sudo docker run --rm -it --gpus all -v /dev/dri:/dev/dri -v $PWD:/rembg rembg-nvidia-cuda-cudnn-gpu i -m birefnet-general input.png output.png

Tips:

  • You can create your own NVIDIA CUDA image and install rembg[gpu,cli] in it.
  • Use -v /path/to/models/:/root/.u2net to store model files outside the container, avoiding re-downloads.

Models

All models are automatically downloaded and saved to ~/.u2net/ on first use.

Available Models

  • u2net (download, source): A pre-trained model for general use cases.
  • u2netp (download, source): A lightweight version of u2net model.
  • u2net_human_seg (download, source): A pre-trained model for human segmentation.
  • u2net_cloth_seg (download, source): A pre-trained model for Cloths Parsing from human portrait. Here clothes are parsed into 3 category: Upper body, Lower body and Full body.
  • silueta (download, source): Same as u2net but the size is reduced to 43Mb.
  • isnet-general-use (download, source): A new pre-trained model for general use cases.
  • isnet-anime (download, source): A high-accuracy segmentation for anime character.
  • sam (download encoder, download decoder, source): A pre-trained model for any use cases.
  • birefnet-general (download, source): A pre-trained model for general use cases.
  • birefnet-general-lite (download, source): A light pre-trained model for general use cases.
  • birefnet-portrait (download, source): A pre-trained model for human portraits.
  • birefnet-dis (download, source): A pre-trained model for dichotomous image segmentation (DIS).
  • birefnet-hrsod (download, source): A pre-trained model for high-resolution salient object detection (HRSOD).
  • birefnet-cod (download, source): A pre-trained model for concealed object detection (COD).
  • birefnet-massive (download, source): A pre-trained model with massive dataset.
  • bria-rmbg (download, source): A state-of-the-art background removal model by BRIA AI.

Training Your Own Model

For fine-tuned models, see this discussion.

FAQ

When will this library support Python version 3.xx?

This library depends on onnxruntime. Python version support is determined by onnxruntime's compatibility.

Support

If you find this project useful, consider buying me a coffee (or a beer):

Buy Me A Coffee

Star History

Star History Chart

License

Copyright (c) 2020-present Daniel Gatis

Licensed under the MIT License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rembg-2.0.72.tar.gz (28.5 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

rembg-2.0.72-py3-none-any.whl (43.7 kB view details)

Uploaded Python 3

File details

Details for the file rembg-2.0.72.tar.gz.

File metadata

  • Download URL: rembg-2.0.72.tar.gz
  • Upload date:
  • Size: 28.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/2.2.1 CPython/3.13.9 Linux/6.11.0-1018-azure

File hashes

Hashes for rembg-2.0.72.tar.gz
Algorithm Hash digest
SHA256 51c761a8767773403ad3242141b3ee3d686728d00ba4fe75304edc8c48a73ce2
MD5 feea5b5c14fdf0a809f8cfa7bf3af9ad
BLAKE2b-256 a6e65a2bf3a26def88f9b92fc6f523dd02d5546a5a65192c9561e3fc4691c837

See more details on using hashes here.

File details

Details for the file rembg-2.0.72-py3-none-any.whl.

File metadata

  • Download URL: rembg-2.0.72-py3-none-any.whl
  • Upload date:
  • Size: 43.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/2.2.1 CPython/3.13.9 Linux/6.11.0-1018-azure

File hashes

Hashes for rembg-2.0.72-py3-none-any.whl
Algorithm Hash digest
SHA256 cb0bd5d1c553aed358caa775f456f5db6fd5c70802aff43867c10b8dca648810
MD5 d3de10edc8077077d0d7940a0cc1551c
BLAKE2b-256 03e103390393417a5272b4cf96a6f59bad4e399f1098f9fe6b12d50490ab4d25

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page