No project description provided
Project description
RL Games: High performance RL library
Papers and related links
- Transferring Dexterous Manipulation from GPU Simulation to a Remote Real-World TriFinger: https://s2r2-ig.github.io/ https://arxiv.org/abs/2108.09779
- Is Independent Learning All You Need in the StarCraft Multi-Agent Challenge? https://arxiv.org/abs/2011.09533
Some results on interesting environments
Config file
Implemented in Pytorch:
- PPO with the support of asymmetric actor-critic variant
- Support of end-to-end GPU accelerated training pipeline with Isaac Gym and Brax
- Masked actions support
- Multi-agent training, decentralized and centralized critic variants
- Self-play
Implemented in Tensorflow 1.x (not updates now):
- Rainbow DQN
- A2C
- PPO
Installation
Clone repo and run:
pip install -e .
Or:
pip install git+https://github.com/Denys88/rl_games.git
Training
NVIDIA Isaac Gym
Download and follow the installation instructions from https://developer.nvidia.com/isaac-gym
Run from python/rlgpu
directory:
Ant
python rlg_train.py --task Ant --headless
python rlg_train.py --task Ant --play --checkpoint nn/Ant.pth --num_envs 100
Humanoid
python rlg_train.py --task Humanoid --headless
python rlg_train.py --task Humanoid --play --checkpoint nn/Humanoid.pth --num_envs 100
Shadow Hand block orientation task
python rlg_train.py --task ShadowHand --headless
python rlg_train.py --task ShadowHand --play --checkpoint nn/ShadowHand.pth --num_envs 100
Atari Pong
python runner.py --train --file rl_games/configs/atari/ppo_pong.yaml
python runner.py --play --file rl_games/configs/atari/ppo_pong.yaml --checkpoint nn/PongNoFrameskip.pth
Brax Ant
python runner.py --train --file rl_games/configs/brax/ppo_ant.yaml
python runner.py --play --file rl_games/configs/atari/ppo_ant.yaml --checkpoint nn/Ant_brax.pth
Troubleshouting
- Some of the supported envs are not installed with setup.py, you need to manually install them
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file rl-games-1.0.2.tar.gz
.
File metadata
- Download URL: rl-games-1.0.2.tar.gz
- Upload date:
- Size: 89.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.24.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.7.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 07210600c222304838ec05a9a430ae924adeed73d41662d7afb291195e407212 |
|
MD5 | eba17dda5cb2d633b612979b9005bc05 |
|
BLAKE2b-256 | 096e73c2edd384f8f7c14c54facdfe6e81be55761f2d845ec20106a0c449b08f |
File details
Details for the file rl_games-1.0.2-py3-none-any.whl
.
File metadata
- Download URL: rl_games-1.0.2-py3-none-any.whl
- Upload date:
- Size: 122.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.24.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.7.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 80e41608f830eb7b69f9f8b7c485aefaf778005e6d83684544dda11f62839036 |
|
MD5 | e723230119bd4b5b0437873c7b6a9113 |
|
BLAKE2b-256 | e328b0954a74d948d897307349167039b22cd1572a896fe48afd0145cc6f850c |