Skip to main content

scBoolSeq: Linking scRNA-Seq Statistics and Boolean Dynamics.

Project description

scBoolSeq

scRNA-Seq data binarisation and synthetic generation from Boolean dynamics.

Installation

Pip

pip install scboolseq

Conda

conda install -c conda-forge -c colomoto scboolseq

Docker

scBoolSeq is included in the ColoMoTo Docker distribution.

Usage

Python API

Here a minimal example is presented, using the same dataset as the CLI usage guide. For further information, please check the documentation.

import pandas as pd
from scboolseq import scBoolSeq

# read in the normalized expression data
nestorowa = pd.read_csv("data_Nestorowa.tsv.gz", index_col=0, sep="\t")
nestorowa.iloc[1:5, 1:5] 
#                HSPC_031  HSPC_037  LT-HSC_001  HSPC_001
# Kdm3a          6.877725  0.000000    0.000000  0.000000
# Coro2b         0.000000  6.913384    8.178374  9.475577
# 8430408G22Rik  0.000000  0.000000    0.000000  0.000000
# Clec9a         0.000000  0.000000    0.000000  0.000000
#
# NOTE : here, genes are rows and observations are columns

scbool_nest = scBoolSeq()

##
## Binarization
##

# scBoolSeq expects genes to be columns, thus we transpose the DataFrame.
scbool_nest.fit(nestorowa.T) # compute binarization criteria

binarized = scbool_nestorowa.binarize(nestorowa.T)
binarized.iloc[1:5, 1:5] 
#             Kdm3a  Coro2b  8430408G22Rik  Phf6
# HSPC_031      1.0     NaN            NaN   0.0
# HSPC_037      0.0     1.0            NaN   0.0
# LT-HSC_001    0.0     1.0            NaN   1.0
# HSPC_001      0.0     1.0            NaN   1.0


##
## Synthetic RNA-Seq generation from Boolean states
##

# We load in a boolean trace obtained from the simulation of a Boolean model
boolean_trace = pd.read_csv("boolean_dynamics.csv", index_col=0)
boolean_trace
#             Kdm3a  Coro2b  8430408G22Rik  Phf6
# init          1.0     0.0            1.0   0.0
# transient_1   0.0     1.0            1.0   0.0
# transient_2   0.0     1.0            0.0   1.0
# stable_state  0.0     1.0            1.0   1.0

synthetic_scrna_pseudocounts = scbool_nestorowa.sample_counts(boolean_trace) 

Contributors

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scboolseq-2.3.2.tar.gz (28.7 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

scboolseq-2.3.2-py3-none-any.whl (31.8 kB view details)

Uploaded Python 3

File details

Details for the file scboolseq-2.3.2.tar.gz.

File metadata

  • Download URL: scboolseq-2.3.2.tar.gz
  • Upload date:
  • Size: 28.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.5

File hashes

Hashes for scboolseq-2.3.2.tar.gz
Algorithm Hash digest
SHA256 394574def4cf971591dd5bd6de2be5bfc47ab843ef5d472c0bbeab8a971bc839
MD5 d4fdfbfd83d67376042b415f03c5c42d
BLAKE2b-256 6e02db1abf8e6a94ad5b83153fe35ff986daced9189171d7433fe0a6c2c72029

See more details on using hashes here.

File details

Details for the file scboolseq-2.3.2-py3-none-any.whl.

File metadata

  • Download URL: scboolseq-2.3.2-py3-none-any.whl
  • Upload date:
  • Size: 31.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.5

File hashes

Hashes for scboolseq-2.3.2-py3-none-any.whl
Algorithm Hash digest
SHA256 bf6a0380605b840fa70feffc39557df7f4def4474b485ea4da0148fcff20d09e
MD5 90eb74e6f159d5fc6da032e2fcd1af7c
BLAKE2b-256 f673caf57d3e40e9e1c92de52b3aea5b8654f350a5fa0bcabcd0142b18708096

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page