Skip to main content

scBoolSeq: Linking scRNA-Seq Statistics and Boolean Dynamics.

Project description

scBoolSeq

scRNA-Seq data binarisation and synthetic generation from Boolean dynamics.

Installation

Pip

pip install scboolseq

Conda

conda install -c conda-forge -c colomoto scboolseq

Docker

scBoolSeq is included in the ColoMoTo Docker distribution.

Usage

Python API

Here a minimal example is presented, using the same dataset as the CLI usage guide. For further information, please check the documentation.

import pandas as pd
from scboolseq import scBoolSeq

# read in the normalized expression data
nestorowa = pd.read_csv("data_Nestorowa.tsv.gz", index_col=0, sep="\t")
nestorowa.iloc[1:5, 1:5] 
#                HSPC_031  HSPC_037  LT-HSC_001  HSPC_001
# Kdm3a          6.877725  0.000000    0.000000  0.000000
# Coro2b         0.000000  6.913384    8.178374  9.475577
# 8430408G22Rik  0.000000  0.000000    0.000000  0.000000
# Clec9a         0.000000  0.000000    0.000000  0.000000
#
# NOTE : here, genes are rows and observations are columns

scbool_nest = scBoolSeq()

##
## Binarization
##

# scBoolSeq expects genes to be columns, thus we transpose the DataFrame.
scbool_nest.fit(nestorowa.T) # compute binarization criteria

binarized = scbool_nestorowa.binarize(nestorowa.T)
binarized.iloc[1:5, 1:5] 
#             Kdm3a  Coro2b  8430408G22Rik  Phf6
# HSPC_031      1.0     NaN            NaN   0.0
# HSPC_037      0.0     1.0            NaN   0.0
# LT-HSC_001    0.0     1.0            NaN   1.0
# HSPC_001      0.0     1.0            NaN   1.0


##
## Synthetic RNA-Seq generation from Boolean states
##

# We load in a boolean trace obtained from the simulation of a Boolean model
boolean_trace = pd.read_csv("boolean_dynamics.csv", index_col=0)
boolean_trace
#             Kdm3a  Coro2b  8430408G22Rik  Phf6
# init          1.0     0.0            1.0   0.0
# transient_1   0.0     1.0            1.0   0.0
# transient_2   0.0     1.0            0.0   1.0
# stable_state  0.0     1.0            1.0   1.0

synthetic_scrna_pseudocounts = scbool_nestorowa.sample_counts(boolean_trace) 

Contributors

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scboolseq-2.2.0.tar.gz (28.7 kB view details)

Uploaded Source

Built Distribution

scBoolSeq-2.2.0-py3-none-any.whl (31.8 kB view details)

Uploaded Python 3

File details

Details for the file scboolseq-2.2.0.tar.gz.

File metadata

  • Download URL: scboolseq-2.2.0.tar.gz
  • Upload date:
  • Size: 28.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.1

File hashes

Hashes for scboolseq-2.2.0.tar.gz
Algorithm Hash digest
SHA256 942b5da80f626cf1e73eaa5d58166ab99e3f6e258cdd52b60e9f5779246b27b4
MD5 391e173fdc2c5187e37095052d666789
BLAKE2b-256 de3c6f5c2e6023a4ec04106c0555f3181dcd60c70768e19324808d339311f10a

See more details on using hashes here.

File details

Details for the file scBoolSeq-2.2.0-py3-none-any.whl.

File metadata

  • Download URL: scBoolSeq-2.2.0-py3-none-any.whl
  • Upload date:
  • Size: 31.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.1

File hashes

Hashes for scBoolSeq-2.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 0454042db755687f1c0ddaa8beb500e87da4cae30eefeed7d7882548a9eef54c
MD5 8cf640847bb24b504951570f6b429abe
BLAKE2b-256 2d14aed7d9ccb3a60ce612c878b42510cca5ac86f81aadc79ee2a35fe0533f92

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page