A set of Python modules for Label Ranking problems.
Project description
scikit-lr
scikit-lr is a Python module integrating Machine Learning algorithms for Label Ranking problems and distributed under MIT license.
Installation
Dependencies
scikit-lr requires:
* Python>=3.6
* Numpy>=1.15.2
* SciPy>=1.1.0
Linux or Mac OS X operating systems. Windows is not currently supported.
User installation
The easiest way to install scikit-lr is using pip package:
pip install -U scikit-lr
Development
Feel free to contribute to the package, but be sure that the standards are followed.
Source code
The latest sources can be obtained with the command:
git clone https://github.com/alfaro96/scikit-lr.git
Setting up a development environment
To setup the development environment, it is strongly recommended to use docker tools (see https://github.com/alfaro96/docker-scikit-lr for details).
Alternatively, one can use Python virtual environments (see https://docs.python.org/3/library/venv.html for details).
Testing
After installation the test suite can be executed from outside the source directory, with (you will need to have pytest>=4.6.4 installed):
pytest sklr
Authors
* Alfaro Jiménez, Juan Carlos
* Aledo Sánchez, Juan Ángel
* Gámez Martín, José Antonio
License
This project is licensed under the MIT License - see the LICENSE file for details.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distributions
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file scikit_lr-0.2.0-cp37-cp37m-manylinux1_x86_64.whl.
File metadata
- Download URL: scikit_lr-0.2.0-cp37-cp37m-manylinux1_x86_64.whl
- Upload date:
- Size: 9.7 MB
- Tags: CPython 3.7m
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/42.0.2 requests-toolbelt/0.9.1 tqdm/4.40.2 CPython/3.5.6
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
f7482db225077a483057e6190bf3dda1a57919d6f431eb3dcd9dae478e7a92e8
|
|
| MD5 |
d585cdfa8c5bc6351da3fd4a67bc3ce2
|
|
| BLAKE2b-256 |
61b088b8b94431c0bfd15aced1346289434a6a7012f6764623f20d8b0b932a33
|
File details
Details for the file scikit_lr-0.2.0-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.
File metadata
- Download URL: scikit_lr-0.2.0-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
- Upload date:
- Size: 10.5 MB
- Tags: CPython 3.7m, macOS 10.10+ Intel (x86-64, i386), macOS 10.10+ x86-64, macOS 10.6+ Intel (x86-64, i386), macOS 10.9+ Intel (x86-64, i386), macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/42.0.2 requests-toolbelt/0.9.1 tqdm/4.40.2 CPython/3.7.1
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
11ecced9095f931a5b5718e6afcd30e9192e785ef2657570e3e74d336835a2f1
|
|
| MD5 |
558a1375c4d01112efecd0eef298933f
|
|
| BLAKE2b-256 |
fd11ad6cff65b82ab518a5940a61cebfa5dcbcfd3ebca0134e37bfb3c984dc3d
|
File details
Details for the file scikit_lr-0.2.0-cp36-cp36m-manylinux1_x86_64.whl.
File metadata
- Download URL: scikit_lr-0.2.0-cp36-cp36m-manylinux1_x86_64.whl
- Upload date:
- Size: 9.7 MB
- Tags: CPython 3.6m
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/42.0.2 requests-toolbelt/0.9.1 tqdm/4.40.2 CPython/3.5.6
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
396b5100c548caf1ca3138fcfcce69cf1b59fe8c4c16b713046203880d5088f5
|
|
| MD5 |
df767005eb213078aa66ee23816adb17
|
|
| BLAKE2b-256 |
2c855f7e529896aac3c23f2e9497cb38a50078236da709ff4fad1662f682381a
|
File details
Details for the file scikit_lr-0.2.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.
File metadata
- Download URL: scikit_lr-0.2.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
- Upload date:
- Size: 10.5 MB
- Tags: CPython 3.6m, macOS 10.10+ Intel (x86-64, i386), macOS 10.10+ x86-64, macOS 10.6+ Intel (x86-64, i386), macOS 10.9+ Intel (x86-64, i386), macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/42.0.2 requests-toolbelt/0.9.1 tqdm/4.40.2 CPython/3.6.7
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
4f6e0cb9d66900fe2aa3ac3ff49adb255f2622dccd859f667d0f76704be098ba
|
|
| MD5 |
133e663042ce95f35d62035aef58dcf5
|
|
| BLAKE2b-256 |
e7db20f4e90671b388f165531012f528a7293ad31a1a52206239d85da729a472
|