Skip to main content

Python interface to UMFPACK sparse direct solver.

Project description

scikit-umfpack

scikit-umfpack provides wrapper of UMFPACK sparse direct solver to SciPy.

Usage:

`python >>> from scikits.umfpack import spsolve, splu >>> lu = splu(A) >>> x = spsolve(A, b) `

Installing scikits.umfpack also enables using UMFPACK solver via some of the scipy.sparse.linalg functions, for SciPy >= 0.14.0. Note you will need to have installed UMFPACK before hand. UMFPACK is parse of [SuiteSparse](http://faculty.cse.tamu.edu/davis/suitesparse.html).

Dependencies

scikit-umfpack depends on NumPy, SciPy, SuiteSparse, and swig is a build-time dependency.

Building SuiteSparse

SuiteSparse may be available from your package manager or as a prebuilt shared library. If that is the case use that if possible. Installation on Ubuntu 14.04 can be achieved with

` sudo apt-get install libsuitesparse-dev `

Otherwise, you will need to build from source. Unfortunately, SuiteSparse’s makefiles do not support building a shared library out of the box. You may find [Stefan Fürtinger instructions helpful](http://fuertinger.lima-city.de/research.html#building-numpy-and-scipy).

Furthmore, building METIS-4.0, an optional but important compile time dependency of SuiteSparse, has problems on newer GCCs. This [patch and instructions](http://www.math-linux.com/mathematics/linear-systems/article/how-to-patch-metis-4-0-error-conflicting-types-for-__log2) from Nadir Soualem are helpful for getting a working METIS build.

Otherwise, I commend you to the documentation.

Install

This package uses distutils, which is the default way of installing python modules. In the directory scikit-umfpack (the same as the file you are reading now) do:

` python setup.py install `

or for a local installation:

` python setup.py install --root=<DIRECTORY> `

Development

Code

You can check the latest sources with the command:

` git clone https://github.com/scikit-umfpack/scikit-umfpack.git `

or if you have write privileges:

` git clone git@github.com:scikit-umfpack/scikit-umfpack.git `

Testing

After installation, you can launch the test suite from outside the source directory (you will need to have the nose package installed):

` nosetests -v scikits.umfpack `

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit-umfpack-0.2.3.tar.gz (22.8 kB view details)

Uploaded Source

Built Distributions

scikit_umfpack-0.2.3-cp35-cp35m-macosx_10_6_intel.whl (96.2 kB view details)

Uploaded CPython 3.5mmacOS 10.6+ Intel (x86-64, i386)

scikit_umfpack-0.2.3-cp34-cp34m-macosx_10_6_intel.whl (151.1 kB view details)

Uploaded CPython 3.4mmacOS 10.6+ Intel (x86-64, i386)

scikit_umfpack-0.2.3-cp27-none-macosx_10_6_intel.whl (146.3 kB view details)

Uploaded CPython 2.7macOS 10.6+ Intel (x86-64, i386)

File details

Details for the file scikit-umfpack-0.2.3.tar.gz.

File metadata

File hashes

Hashes for scikit-umfpack-0.2.3.tar.gz
Algorithm Hash digest
SHA256 9c8935717b17e8b43ad8ec989c2ca0e48c1e1b01fe0d1a16e19feecde2ee9524
MD5 eccb5e4864e85fc7ed8c4ae4c86b6245
BLAKE2b-256 57d8f50783ed429026f4082dd66e6c7c2fe1645e5a20387058f4b34feec760f9

See more details on using hashes here.

File details

Details for the file scikit_umfpack-0.2.3-cp35-cp35m-macosx_10_6_intel.whl.

File metadata

File hashes

Hashes for scikit_umfpack-0.2.3-cp35-cp35m-macosx_10_6_intel.whl
Algorithm Hash digest
SHA256 236d3832e6a59f1cc53a616a9259e0684449235c32b1f4ce43ba0875192f1193
MD5 90f405900fd383be0251f03b47d86135
BLAKE2b-256 1214df70f05e92a25e5a601696cf6676cb0348cd277de9aa86aa45c0b6c09b6b

See more details on using hashes here.

File details

Details for the file scikit_umfpack-0.2.3-cp34-cp34m-macosx_10_6_intel.whl.

File metadata

File hashes

Hashes for scikit_umfpack-0.2.3-cp34-cp34m-macosx_10_6_intel.whl
Algorithm Hash digest
SHA256 0fb25f85f4c1b82ce78a831ba9bf1a266f4a781a882e493166c9394744dde45a
MD5 b42a3c5d22f8057eb62c6e973b5993e3
BLAKE2b-256 bddfc9193594aacd35cec6f6209a0aaa056188a1fd622d58e29fa25f94e2066f

See more details on using hashes here.

File details

Details for the file scikit_umfpack-0.2.3-cp27-none-macosx_10_6_intel.whl.

File metadata

File hashes

Hashes for scikit_umfpack-0.2.3-cp27-none-macosx_10_6_intel.whl
Algorithm Hash digest
SHA256 20aa91f3bdbbb7f39ea137ea026987b4da7f2350d114bf00467da371448ce182
MD5 d3f70f051fc919b1b0302168a7c76de7
BLAKE2b-256 ce1906c49eb4e704a254541a3cde7b1fb194fed204111a99c6493a2d3936db24

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page