Python interface to UMFPACK sparse direct solver.
Project description
scikit-umfpack
scikit-umfpack provides wrapper of UMFPACK sparse direct solver to SciPy.
Usage:
`python >>> from scikits.umfpack import spsolve, splu >>> lu = splu(A) >>> x = spsolve(A, b) `
Installing scikits.umfpack also enables using UMFPACK solver via some of the scipy.sparse.linalg functions, for SciPy >= 0.14.0. Note you will need to have installed UMFPACK before hand. UMFPACK is parse of [SuiteSparse](http://faculty.cse.tamu.edu/davis/suitesparse.html).
Dependencies
scikit-umfpack depends on NumPy, SciPy, SuiteSparse, and swig is a build-time dependency.
Building SuiteSparse
SuiteSparse may be available from your package manager or as a prebuilt shared library. If that is the case use that if possible. Installation on Ubuntu 14.04 can be achieved with
` sudo apt-get install libsuitesparse-dev `
Otherwise, you will need to build from source. Unfortunately, SuiteSparse’s makefiles do not support building a shared library out of the box. You may find [Stefan Fürtinger instructions helpful](http://fuertinger.lima-city.de/research.html#building-numpy-and-scipy).
Furthmore, building METIS-4.0, an optional but important compile time dependency of SuiteSparse, has problems on newer GCCs. This [patch and instructions](http://www.math-linux.com/mathematics/linear-systems/article/how-to-patch-metis-4-0-error-conflicting-types-for-__log2) from Nadir Soualem are helpful for getting a working METIS build.
Otherwise, I commend you to the documentation.
Install
This package uses distutils, which is the default way of installing python modules. In the directory scikit-umfpack (the same as the file you are reading now) do:
` python setup.py install `
or for a local installation:
` python setup.py install --root=<DIRECTORY> `
Development
Code
You can check the latest sources with the command:
` git clone https://github.com/scikit-umfpack/scikit-umfpack.git `
or if you have write privileges:
` git clone git@github.com:scikit-umfpack/scikit-umfpack.git `
Testing
After installation, you can launch the test suite from outside the source directory (you will need to have the nose package installed):
` nosetests -v scikits.umfpack `
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
File details
Details for the file scikit-umfpack-0.2.3.tar.gz
.
File metadata
- Download URL: scikit-umfpack-0.2.3.tar.gz
- Upload date:
- Size: 22.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
9c8935717b17e8b43ad8ec989c2ca0e48c1e1b01fe0d1a16e19feecde2ee9524
|
|
MD5 |
eccb5e4864e85fc7ed8c4ae4c86b6245
|
|
BLAKE2b-256 |
57d8f50783ed429026f4082dd66e6c7c2fe1645e5a20387058f4b34feec760f9
|
File details
Details for the file scikit_umfpack-0.2.3-cp35-cp35m-macosx_10_6_intel.whl
.
File metadata
- Download URL: scikit_umfpack-0.2.3-cp35-cp35m-macosx_10_6_intel.whl
- Upload date:
- Size: 96.2 kB
- Tags: CPython 3.5m, macOS 10.6+ Intel (x86-64, i386)
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
236d3832e6a59f1cc53a616a9259e0684449235c32b1f4ce43ba0875192f1193
|
|
MD5 |
90f405900fd383be0251f03b47d86135
|
|
BLAKE2b-256 |
1214df70f05e92a25e5a601696cf6676cb0348cd277de9aa86aa45c0b6c09b6b
|
File details
Details for the file scikit_umfpack-0.2.3-cp34-cp34m-macosx_10_6_intel.whl
.
File metadata
- Download URL: scikit_umfpack-0.2.3-cp34-cp34m-macosx_10_6_intel.whl
- Upload date:
- Size: 151.1 kB
- Tags: CPython 3.4m, macOS 10.6+ Intel (x86-64, i386)
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
0fb25f85f4c1b82ce78a831ba9bf1a266f4a781a882e493166c9394744dde45a
|
|
MD5 |
b42a3c5d22f8057eb62c6e973b5993e3
|
|
BLAKE2b-256 |
bddfc9193594aacd35cec6f6209a0aaa056188a1fd622d58e29fa25f94e2066f
|
File details
Details for the file scikit_umfpack-0.2.3-cp27-none-macosx_10_6_intel.whl
.
File metadata
- Download URL: scikit_umfpack-0.2.3-cp27-none-macosx_10_6_intel.whl
- Upload date:
- Size: 146.3 kB
- Tags: CPython 2.7, macOS 10.6+ Intel (x86-64, i386)
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
20aa91f3bdbbb7f39ea137ea026987b4da7f2350d114bf00467da371448ce182
|
|
MD5 |
d3f70f051fc919b1b0302168a7c76de7
|
|
BLAKE2b-256 |
ce1906c49eb4e704a254541a3cde7b1fb194fed204111a99c6493a2d3936db24
|