Skip to main content
Join the official 2019 Python Developers SurveyStart the survey!

Testing framework for sequence labeling

Project description

seqeval

seqeval is a Python framework for sequence labeling evaluation. seqeval can evaluate the performance of chunking tasks such as named-entity recognition, part-of-speech tagging, semantic role labeling and so on.

This is well-tested by using the Perl script conlleval, which can be used for measuring the performance of a system that has processed the CoNLL-2000 shared task data.

Support features

seqeval supports following formats:

  • IOB1
  • IOB2
  • IOE1
  • IOE2
  • IOBES

and supports following metrics:

metrics description
accuracy_score(y_true, y_pred) Compute the accuracy.
precision_score(y_true, y_pred) Compute the precision.
recall_score(y_true, y_pred) Compute the recall.
f1_score(y_true, y_pred) Compute the F1 score, also known as balanced F-score or F-measure.
classification_report(y_true, y_pred, digits=2) Build a text report showing the main classification metrics. digits is number of digits for formatting output floating point values. Default value is 2.

Usage

Behold, the power of seqeval:

>>> from seqeval.metrics import accuracy_score
>>> from seqeval.metrics import classification_report
>>> from seqeval.metrics import f1_score
>>> 
>>> y_true = [['O', 'O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'O'], ['B-PER', 'I-PER', 'O']]
>>> y_pred = [['O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'I-MISC', 'O'], ['B-PER', 'I-PER', 'O']]
>>>
>>> f1_score(y_true, y_pred)
0.50
>>> accuracy_score(y_true, y_pred)
0.80
>>> classification_report(y_true, y_pred)
             precision    recall  f1-score   support

       MISC       0.00      0.00      0.00         1
        PER       1.00      1.00      1.00         1

  micro avg       0.50      0.50      0.50         2
  macro avg       0.50      0.50      0.50         2

Keras Callback

Seqeval provides a callback for Keras:

from seqeval.callbacks import F1Metrics

id2label = {0: '<PAD>', 1: 'B-LOC', 2: 'I-LOC'}
callbacks = [F1Metrics(id2label)]
model.fit(x, y, validation_data=(x_val, y_val), callbacks=callbacks)

Installation

To install seqeval, simply run:

$ pip install seqeval[cpu]

If you want to install seqeval on GPU environment, please run:

$ pip install seqeval[gpu]

Requirement

  • numpy >= 1.14.0
  • tensorflow(optional)

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for seqeval, version 0.0.12
Filename, size File type Python version Upload date Hashes
Filename, size seqeval-0.0.12.tar.gz (21.6 kB) File type Source Python version None Upload date Hashes View hashes

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page