Skip to main content

Testing framework for sequence labeling

Project description

seqeval

seqeval is a Python framework for sequence labeling evaluation. seqeval can evaluate the performance of chunking tasks such as named-entity recognition, part-of-speech tagging, semantic role labeling and so on.

This is well-tested by using the Perl script conlleval, which can be used for measuring the performance of a system that has processed the CoNLL-2000 shared task data.

Support features

seqeval supports following formats:

  • IOB1
  • IOB2
  • IOE1
  • IOE2
  • IOBES

and supports following metrics:

metrics description
accuracy_score(y_true, y_pred) Compute the accuracy.
precision_score(y_true, y_pred) Compute the precision.
recall_score(y_true, y_pred) Compute the recall.
f1_score(y_true, y_pred) Compute the F1 score, also known as balanced F-score or F-measure.
classification_report(y_true, y_pred, digits=2) Build a text report showing the main classification metrics. digits is number of digits for formatting output floating point values. Default value is 2.

Usage

Behold, the power of seqeval:

>>> from seqeval.metrics import accuracy_score
>>> from seqeval.metrics import classification_report
>>> from seqeval.metrics import f1_score
>>> 
>>> y_true = [['O', 'O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'O'], ['B-PER', 'I-PER', 'O']]
>>> y_pred = [['O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'I-MISC', 'O'], ['B-PER', 'I-PER', 'O']]
>>>
>>> f1_score(y_true, y_pred)
0.50
>>> accuracy_score(y_true, y_pred)
0.80
>>> classification_report(y_true, y_pred)
             precision    recall  f1-score   support

       MISC       0.00      0.00      0.00         1
        PER       1.00      1.00      1.00         1

  micro avg       0.50      0.50      0.50         2
  macro avg       0.50      0.50      0.50         2

Keras Callback

Seqeval provides a callback for Keras:

from seqeval.callbacks import F1Metrics

id2label = {0: '<PAD>', 1: 'B-LOC', 2: 'I-LOC'}
callbacks = [F1Metrics(id2label)]
model.fit(x, y, validation_data=(x_val, y_val), callbacks=callbacks)

Installation

To install seqeval, simply run:

$ pip install seqeval[cpu]

If you want to install seqeval on GPU environment, please run:

$ pip install seqeval[gpu]

Requirement

  • numpy >= 1.14.0
  • tensorflow(optional)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

seqeval-0.0.13.tar.gz (20.6 kB view details)

Uploaded Source

File details

Details for the file seqeval-0.0.13.tar.gz.

File metadata

  • Download URL: seqeval-0.0.13.tar.gz
  • Upload date:
  • Size: 20.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.50.0 CPython/3.6.7

File hashes

Hashes for seqeval-0.0.13.tar.gz
Algorithm Hash digest
SHA256 37634db12459ca0f34ab189f365311c9473a1f10f3f66f529659a409b032e6a9
MD5 7edec08c46eea4bf996634a7a70de818
BLAKE2b-256 61fac1c87e39572550ae8794a7f0209e2a08301ea28c8cd1deb1204ec8609ecb

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page