Skip to main content

SIGNed explanations: Unveiling relevant features by reducing bias

Project description

SIGNed explanations: Unveiling relevant features by reducing bias

This repository and python package has been published alongside the following journal article: https://doi.org/10.1016/j.inffus.2023.101883

If you use the code from this repository in your work, please cite:

 @article{Gumpfer2023SIGN,
    title = {SIGNed explanations: Unveiling relevant features by reducing bias},
    author = {Nils Gumpfer and Joshua Prim and Till Keller and Bernhard Seeger and Michael Guckert and Jennifer Hannig},
    journal = {Information Fusion},
    pages = {101883},
    year = {2023},
    issn = {1566-2535},
    doi = {https://doi.org/10.1016/j.inffus.2023.101883},
    url = {https://www.sciencedirect.com/science/article/pii/S1566253523001999}
}

Experiments

To reproduce the experiments from our paper, please find a detailed description on https://github.com/nilsgumpfer/SIGN.

Setup

To install the package in your environment, run:

 pip3 install signxai

Usage

VGG16

The below example illustrates the usage of the signxai package in combination with a VGG16 model trained on imagenet:

import numpy as np
import matplotlib.pyplot as plt
from tensorflow.keras.applications.vgg16 import VGG16
from signxai.methods.wrappers import calculate_relevancemap
from signxai.utils.utils import (load_image, aggregate_and_normalize_relevancemap_rgb, download_image, 
                                 calculate_explanation_innvestigate)

# Load model
model = VGG16(weights='imagenet')

#  Remove last layer's softmax activation (we need the raw values!)
model.layers[-1].activation = None

# Load example image
path = 'example.jpg'
download_image(path)
img, x = load_image(path)

# Calculate relevancemaps
R1 = calculate_relevancemap('lrpz_epsilon_0_1_std_x', np.array(x), model)
R2 = calculate_relevancemap('lrpsign_epsilon_0_1_std_x', np.array(x), model)

# Equivalent relevance maps as for R1 and R2, but with direct access to innvestigate and parameters
R3 = calculate_explanation_innvestigate(model, x, method='lrp.stdxepsilon', stdfactor=0.1, input_layer_rule='Z')
R4 = calculate_explanation_innvestigate(model, x, method='lrp.stdxepsilon', stdfactor=0.1, input_layer_rule='SIGN')

# Visualize heatmaps
fig, axs = plt.subplots(ncols=3, nrows=2, figsize=(18, 12))
axs[0][0].imshow(img)
axs[1][0].imshow(img)
axs[0][1].matshow(aggregate_and_normalize_relevancemap_rgb(R1), cmap='seismic', clim=(-1, 1))
axs[0][2].matshow(aggregate_and_normalize_relevancemap_rgb(R2), cmap='seismic', clim=(-1, 1))
axs[1][1].matshow(aggregate_and_normalize_relevancemap_rgb(R3), cmap='seismic', clim=(-1, 1))
axs[1][2].matshow(aggregate_and_normalize_relevancemap_rgb(R4), cmap='seismic', clim=(-1, 1))

plt.show()

(Image credit for example used in this code: Greg Gjerdingen from Willmar, USA)

MNIST

The below example illustrates the usage of the signxai package in combination with a dense model trained on MNIST:

import numpy as np
from matplotlib import pyplot as plt
from tensorflow.python.keras.datasets import mnist
from tensorflow.python.keras.models import load_model

from signxai.methods.wrappers import calculate_relevancemap
from signxai.utils.utils import normalize_heatmap, download_model

# Load train and test data
(x_train, y_train), (x_test, y_test) = mnist.load_data()

# Scale images to the [-1, 0] range
x_train = x_train.astype("float32") / -255.0
x_test = x_test.astype("float32") / -255.0
x_train = -(np.ones_like(x_train) + x_train)
x_test = -(np.ones_like(x_test) + x_test)

# Load model
path = 'model.h5'
download_model(path)
model = load_model(path)

# Remove softmax
model.layers[-1].activation = None

# Calculate relevancemaps
x = x_test[231]
R1 = calculate_relevancemap('gradient_x_input', np.array(x), model, neuron_selection=3)
R2 = calculate_relevancemap('gradient_x_sign_mu_neg_0_5', np.array(x), model, neuron_selection=3)
R3 = calculate_relevancemap('gradient_x_input', np.array(x), model, neuron_selection=8)
R4 = calculate_relevancemap('gradient_x_sign_mu_neg_0_5', np.array(x), model, neuron_selection=8)

# Visualize heatmaps
fig, axs = plt.subplots(ncols=3, nrows=2, figsize=(18, 12))
axs[0][0].imshow(x, cmap='seismic', clim=(-1, 1))
axs[1][0].imshow(x, cmap='seismic', clim=(-1, 1))
axs[0][1].matshow(normalize_heatmap(R1), cmap='seismic', clim=(-1, 1))
axs[0][2].matshow(normalize_heatmap(R2), cmap='seismic', clim=(-1, 1))
axs[1][1].matshow(normalize_heatmap(R3), cmap='seismic', clim=(-1, 1))
axs[1][2].matshow(normalize_heatmap(R4), cmap='seismic', clim=(-1, 1))

plt.show()

Methods

Method Base Parameters
gradient Gradient
input_t_gradient Gradient x Input
gradient_x_input Gradient x Input
gradient_x_sign Gradient x SIGN mu = 0
gradient_x_sign_mu Gradient x SIGN requires mu parameter
gradient_x_sign_mu_0 Gradient x SIGN mu = 0
gradient_x_sign_mu_0_5 Gradient x SIGN mu = 0.5
gradient_x_sign_mu_neg_0_5 Gradient x SIGN mu = -0.5
guided_backprop Guided Backpropagation
guided_backprop_x_sign Guided Backpropagation x SIGN mu = 0
guided_backprop_x_sign_mu Guided Backpropagation x SIGN requires mu parameter
guided_backprop_x_sign_mu_0 Guided Backpropagation x SIGN mu = 0
guided_backprop_x_sign_mu_0_5 Guided Backpropagation x SIGN mu = 0.5
guided_backprop_x_sign_mu_neg_0_5 Guided Backpropagation x SIGN mu = -0.5
integrated_gradients Integrated Gradients
smoothgrad SmoothGrad
smoothgrad_x_sign SmoothGrad x SIGN mu = 0
smoothgrad_x_sign_mu SmoothGrad x SIGN requires mu parameter
smoothgrad_x_sign_mu_0 SmoothGrad x SIGN mu = 0
smoothgrad_x_sign_mu_0_5 SmoothGrad x SIGN mu = 0.5
smoothgrad_x_sign_mu_neg_0_5 SmoothGrad x SIGN mu = -0.5
vargrad VarGrad
deconvnet DeconvNet
deconvnet_x_sign DeconvNet x SIGN mu = 0
deconvnet_x_sign_mu DeconvNet x SIGN requires mu parameter
deconvnet_x_sign_mu_0 DeconvNet x SIGN mu = 0
deconvnet_x_sign_mu_0_5 DeconvNet x SIGN mu = 0.5
deconvnet_x_sign_mu_neg_0_5 DeconvNet x SIGN mu = -0.5
grad_cam Grad-CAM requires last_conv parameter
grad_cam_timeseries Grad-CAM (for time series data), requires last_conv parameter
grad_cam_VGG16ILSVRC last_conv based on VGG16
guided_grad_cam_VGG16ILSVRC last_conv based on VGG16
lrp_z LRP-z
lrpsign_z LRP-z / LRP-SIGN (Inputlayer-Rule)
zblrp_z_VGG16ILSVRC LRP-z / LRP-ZB (Inputlayer-Rule) bounds based on ImageNet
w2lrp_z LRP-z / LRP-w² (Inputlayer-Rule)
flatlrp_z LRP-z / LRP-flat (Inputlayer-Rule)
lrp_epsilon_0_001 LRP-epsilon epsilon = 0.001
lrpsign_epsilon_0_001 LRP-epsilon / LRP-SIGN (Inputlayer-Rule) epsilon = 0.001
zblrp_epsilon_0_001_VGG16ILSVRC LRP-epsilon / LRP-ZB (Inputlayer-Rule) bounds based on ImageNet, epsilon = 0.001
lrpz_epsilon_0_001 LRP-epsilon / LRP-z (Inputlayer-Rule) epsilon = 0.001
lrp_epsilon_0_01 LRP-epsilon epsilon = 0.01
lrpsign_epsilon_0_01 LRP-epsilon / LRP-SIGN (Inputlayer-Rule) epsilon = 0.01
zblrp_epsilon_0_01_VGG16ILSVRC LRP-epsilon / LRP-ZB (Inputlayer-Rule) bounds based on ImageNet, epsilon = 0.01
lrpz_epsilon_0_01 LRP-epsilon / LRP-z (Inputlayer-Rule) epsilon = 0.01
w2lrp_epsilon_0_01 LRP-epsilon / LRP-w² (Inputlayer-Rule) epsilon = 0.01
flatlrp_epsilon_0_01 LRP-epsilon / LRP-flat (Inputlayer-Rule) epsilon = 0.01
lrp_epsilon_0_1 LRP-epsilon epsilon = 0.1
lrpsign_epsilon_0_1 LRP-epsilon / LRP-SIGN (Inputlayer-Rule) epsilon = 0.1
zblrp_epsilon_0_1_VGG16ILSVRC LRP-epsilon / LRP-ZB (Inputlayer-Rule) bounds based on ImageNet, epsilon = 0.1
lrpz_epsilon_0_1 LRP-epsilon / LRP-z (Inputlayer-Rule) epsilon = 0.1
w2lrp_epsilon_0_1 LRP-epsilon / LRP-w² (Inputlayer-Rule) epsilon = 0.1
flatlrp_epsilon_0_1 LRP-epsilon / LRP-flat (Inputlayer-Rule) epsilon = 0.1
lrp_epsilon_0_2 LRP-epsilon epsilon = 0.2
lrpsign_epsilon_0_2 LRP-epsilon / LRP-SIGN (Inputlayer-Rule) epsilon = 0.2
zblrp_epsilon_0_2_VGG16ILSVRC LRP-epsilon / LRP-ZB (Inputlayer-Rule) bounds based on ImageNet, epsilon = 0.2
lrpz_epsilon_0_2 LRP-epsilon / LRP-z (Inputlayer-Rule) epsilon = 0.2
lrp_epsilon_0_5 LRP-epsilon epsilon = 0.5
lrpsign_epsilon_0_5 LRP-epsilon / LRP-SIGN (Inputlayer-Rule) epsilon = 0.5
zblrp_epsilon_0_5_VGG16ILSVRC LRP-epsilon / LRP-ZB (Inputlayer-Rule) bounds based on ImageNet, epsilon = 0.5
lrpz_epsilon_0_5 LRP-epsilon / LRP-z (Inputlayer-Rule) epsilon = 0.5
lrp_epsilon_1 LRP-epsilon epsilon = 1
lrpsign_epsilon_1 LRP-epsilon / LRP-SIGN (Inputlayer-Rule) epsilon = 1
zblrp_epsilon_1_VGG16ILSVRC LRP-epsilon / LRP-ZB (Inputlayer-Rule) bounds based on ImageNet, epsilon = 1
lrpz_epsilon_1 LRP-epsilon / LRP-z (Inputlayer-Rule) epsilon = 1
w2lrp_epsilon_1 LRP-epsilon / LRP-w² (Inputlayer-Rule) epsilon = 1
flatlrp_epsilon_1 LRP-epsilon / LRP-flat (Inputlayer-Rule) epsilon = 1
lrp_epsilon_5 LRP-epsilon epsilon = 5
lrpsign_epsilon_5 LRP-epsilon / LRP-SIGN (Inputlayer-Rule) epsilon = 5
zblrp_epsilon_5_VGG16ILSVRC LRP-epsilon / LRP-ZB (Inputlayer-Rule) bounds based on ImageNet, epsilon = 5
lrpz_epsilon_5 LRP-epsilon / LRP-z (Inputlayer-Rule) epsilon = 5
lrp_epsilon_10 LRP-epsilon epsilon = 10
lrpsign_epsilon_10 LRP-epsilon / LRP-SIGN (Inputlayer-Rule) epsilon = 10
zblrp_epsilon_10_VGG106ILSVRC LRP-epsilon / LRP-ZB (Inputlayer-Rule) bounds based on ImageNet, epsilon = 10
lrpz_epsilon_10 LRP-epsilon / LRP-z (Inputlayer-Rule) epsilon = 10
w2lrp_epsilon_10 LRP-epsilon / LRP-w² (Inputlayer-Rule) epsilon = 10
flatlrp_epsilon_10 LRP-epsilon / LRP-flat (Inputlayer-Rule) epsilon = 10
lrp_epsilon_20 LRP-epsilon epsilon = 20
lrpsign_epsilon_20 LRP-epsilon / LRP-SIGN (Inputlayer-Rule) epsilon = 20
zblrp_epsilon_20_VGG206ILSVRC LRP-epsilon / LRP-ZB (Inputlayer-Rule) bounds based on ImageNet, epsilon = 20
lrpz_epsilon_20 LRP-epsilon / LRP-z (Inputlayer-Rule) epsilon = 20
w2lrp_epsilon_20 LRP-epsilon / LRP-w² (Inputlayer-Rule) epsilon = 20
flatlrp_epsilon_20 LRP-epsilon / LRP-flat (Inputlayer-Rule) epsilon = 20
lrp_epsilon_50 LRP-epsilon epsilon = 50
lrpsign_epsilon_50 LRP-epsilon / LRP-SIGN (Inputlayer-Rule) epsilon = 50
lrpz_epsilon_50 LRP-epsilon / LRP-z (Inputlayer-Rule) epsilon = 50
lrp_epsilon_75 LRP-epsilon epsilon = 75
lrpsign_epsilon_75 LRP-epsilon / LRP-SIGN (Inputlayer-Rule) epsilon = 75
lrpz_epsilon_75 LRP-epsilon / LRP-z (Inputlayer-Rule) epsilon = 75
lrp_epsilon_100 LRP-epsilon epsilon = 100
lrpsign_epsilon_100 LRP-epsilon / LRP-SIGN (Inputlayer-Rule) epsilon = 100, mu = 0
lrpsign_epsilon_100_mu_0 LRP-epsilon / LRP-SIGN (Inputlayer-Rule) epsilon = 100, mu = 0
lrpsign_epsilon_100_mu_0_5 LRP-epsilon / LRP-SIGN (Inputlayer-Rule) epsilon = 100, mu = 0.5
lrpsign_epsilon_100_mu_neg_0_5 LRP-epsilon / LRP-SIGN (Inputlayer-Rule) epsilon = 100, mu = -0.5
lrpz_epsilon_100 LRP-epsilon / LRP-z (Inputlayer-Rule) epsilon = 100
zblrp_epsilon_100_VGG16ILSVRC LRP-epsilon / LRP-ZB (Inputlayer-Rule) bounds based on ImageNet, epsilon = 100
w2lrp_epsilon_100 LRP-epsilon / LRP-w² (Inputlayer-Rule) epsilon = 100
flatlrp_epsilon_100 LRP-epsilon / LRP-flat (Inputlayer-Rule) epsilon = 100
lrp_epsilon_0_1_std_x LRP-epsilon epsilon = 0.1 * std(x)
lrpsign_epsilon_0_1_std_x LRP-epsilon / LRP-SIGN (Inputlayer-Rule) epsilon = 0.1 * std(x)
lrpz_epsilon_0_1_std_x LRP-epsilon / LRP-z (Inputlayer-Rule) epsilon = 0.1 * std(x)
zblrp_epsilon_0_1_std_x_VGG16ILSVRC LRP-epsilon / LRP-ZB (Inputlayer-Rule) bounds based on ImageNet, epsilon = 0.1 * std(x)
w2lrp_epsilon_0_1_std_x LRP-epsilon / LRP-w² (Inputlayer-Rule) epsilon = 0.1 * std(x)
flatlrp_epsilon_0_1_std_x LRP-epsilon / LRP-flat (Inputlayer-Rule) epsilon = 0.1 * std(x)
lrp_epsilon_0_25_std_x LRP-epsilon epsilon = 0.25 * std(x)
lrpsign_epsilon_0_25_std_x LRP-epsilon / LRP-SIGN (Inputlayer-Rule) epsilon = 0.25 * std(x), mu = 0
lrpz_epsilon_0_25_std_x LRP-epsilon / LRP-z (Inputlayer-Rule) epsilon = 0.25 * std(x)
zblrp_epsilon_0_25_std_x_VGG256ILSVRC LRP-epsilon / LRP-ZB (Inputlayer-Rule) bounds based on ImageNet, epsilon = 0.25 * std(x)
w2lrp_epsilon_0_25_std_x LRP-epsilon / LRP-w² (Inputlayer-Rule) epsilon = 0.25 * std(x)
flatlrp_epsilon_0_25_std_x LRP-epsilon / LRP-flat (Inputlayer-Rule) epsilon = 0.25 * std(x)
lrpsign_epsilon_0_25_std_x_mu_0 LRP-epsilon / LRP-SIGN (Inputlayer-Rule) epsilon = 0.25 * std(x), mu = 0
lrpsign_epsilon_0_25_std_x_mu_0_5 LRP-epsilon / LRP-SIGN (Inputlayer-Rule) epsilon = 0.25 * std(x), mu = 0.5
lrpsign_epsilon_0_25_std_x_mu_neg_0_5 LRP-epsilon / LRP-SIGN (Inputlayer-Rule) epsilon = 0.25 * std(x), mu = -0.5
lrp_epsilon_0_5_std_x LRP-epsilon epsilon = 0.5 * std(x)
lrpsign_epsilon_0_5_std_x LRP-epsilon / LRP-SIGN (Inputlayer-Rule) epsilon = 0.5 * std(x)
lrpz_epsilon_0_5_std_x LRP-epsilon / LRP-z (Inputlayer-Rule) epsilon = 0.5 * std(x)
zblrp_epsilon_0_5_std_x_VGG56ILSVRC LRP-epsilon / LRP-ZB (Inputlayer-Rule) bounds based on ImageNet, epsilon = 0.5 * std(x)
w2lrp_epsilon_0_5_std_x LRP-epsilon / LRP-w² (Inputlayer-Rule) epsilon = 0.5 * std(x)
flatlrp_epsilon_0_5_std_x LRP-epsilon / LRP-flat (Inputlayer-Rule) epsilon = 0.5 * std(x)
lrp_epsilon_1_std_x LRP-epsilon epsilon = 1 * std(x)
lrpsign_epsilon_1_std_x LRP-epsilon / LRP-SIGN (Inputlayer-Rule) epsilon = 1 * std(x), mu = 0
lrpz_epsilon_1_std_x LRP-epsilon / LRP-z (Inputlayer-Rule) epsilon = 1 * std(x)
lrp_epsilon_2_std_x LRP-epsilon epsilon = 2 * std(x)
lrpsign_epsilon_2_std_x LRP-epsilon / LRP-SIGN (Inputlayer-Rule) epsilon = 2 * std(x), mu = 0
lrpz_epsilon_2_std_x LRP-epsilon / LRP-z (Inputlayer-Rule) epsilon = 2 * std(x)
lrp_epsilon_3_std_x LRP-epsilon epsilon = 3 * std(x)
lrpsign_epsilon_3_std_x LRP-epsilon / LRP-SIGN (Inputlayer-Rule) epsilon = 3 * std(x), mu = 0
lrpz_epsilon_3_std_x LRP-epsilon / LRP-z (Inputlayer-Rule) epsilon = 3 * std(x)
lrp_alpha_1_beta_0 LRP-alpha-beta alpha = 1, beta = 0
lrpsign_alpha_1_beta_0 LRP-alpha-beta / LRP-SIGN (Inputlayer-Rule) alpha = 1, beta = 0, mu = 0
lrpz_alpha_1_beta_0 LRP-alpha-beta / LRP-z (Inputlayer-Rule) alpha = 1, beta = 0
zblrp_alpha_1_beta_0_VGG16ILSVRC bounds based on ImageNet, alpha = 1, beta = 0
w2lrp_alpha_1_beta_0 LRP-alpha-beta / LRP-ZB (Inputlayer-Rule) alpha = 1, beta = 0
flatlrp_alpha_1_beta_0 LRP-alpha-beta / LRP-flat (Inputlayer-Rule) alpha = 1, beta = 0
lrp_sequential_composite_a LRP Comosite Variant A
lrpsign_sequential_composite_a LRP Comosite Variant A / LRP-SIGN (Inputlayer-Rule) mu = 0
lrpz_sequential_composite_a LRP Comosite Variant A / LRP-z (Inputlayer-Rule)
zblrp_sequential_composite_a_VGG16ILSVRC bounds based on ImageNet
w2lrp_sequential_composite_a LRP Comosite Variant A / LRP-ZB (Inputlayer-Rule)
flatlrp_sequential_composite_a LRP Comosite Variant A / LRP-flat (Inputlayer-Rule)
lrp_sequential_composite_b LRP Comosite Variant B
lrpsign_sequential_composite_b LRP Comosite Variant B / LRP-SIGN (Inputlayer-Rule) mu = 0
lrpz_sequential_composite_b LRP Comosite Variant B / LRP-z (Inputlayer-Rule)
zblrp_sequential_composite_b_VGG16ILSVRC bounds based on ImageNet
w2lrp_sequential_composite_b LRP Comosite Variant B / LRP-ZB (Inputlayer-Rule)
flatlrp_sequential_composite_b LRP Comosite Variant B / LRP-flat (Inputlayer-Rule)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

signxai-1.1.8.1.tar.gz (88.9 kB view hashes)

Uploaded Source

Built Distribution

signxai-1.1.8.1-py3-none-any.whl (111.5 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page