Skip to main content

SPGCI is an API Client for the S&P Commodity Insights REST API

Project description

SPGCI Python Library

Python Client for the S&P Global Commodity Insights API.

Looking for more examples? Check out our Notebook Gallery.

Installation

Requires Python >= 3.9.0.

pip install spgci

Getting Started

Open In Colab

    import spgci as ci

    ci.set_credentials(<username>, <password>)
    mdd = ci.MarketData()

    symbols = ["PCAAS00", "PCAAT00"]
    mdd.get_assessments_by_symbol_current(symbol=symbols)

SPGCI


Alternatively, you can set your credentials via Environment Variables and omit the set_credentials call:

Environment Variable Description
SPGCI_USERNAME Your Username
SPGCI_PASSWORD Your Password

Features

  • Automatically generates token prior to making request.
  • Returns data as a pandas DataFrame (set raw=False to get the raw request.response object).
  • Can auto-paginate response and concatenates into a single DataFrame (set paginate=True to enable).
  • Sets datatype for date and datetime fields in DataFrame.
  • Composes nicely with native python/pandas types. Arguments support lists and pd.Series which are automatically converted into filter expressions.

Datasets Supported

Market Data

import spgci as ci

mdd = ci.MarketData()

mdd.get_symbols(commodity="Crude oil")
# DataFrame of symbols with commodity = "Crude oil".

mdd.get_mdcs(subscribed_only=True)
# DataFrame of all Market Data Categories you are subscribed to.

mdd.get_assessments_by_mdc_current(mdc="ET")
# DataFrame of current assessments for all symbols in the Market Data Category "ET".

Forward Curves

import spgci as ci

fc = ci.ForwardCurves()

fc.get_curves(
    commodity=["Benzene", "Crude oil"],
    derivative_maturity_frequency="Month"
    )
# DataFrame of all curves with commodity in ("Benzene", "Crude Oil") and have a Monthly frequency.

fc.get_assessments(curve_code=["CN003", "CN006"])
# DataFrame of the latest assessments for all symbols in the curves ("CN003", "CN006").

Energy Price Forecast

import spgci as ci

epf = ci.EnergyPriceForecast()

epf.get_prices_shortterm(symbol="PCAAS00", month=[10, 11, 12])
# DataFrame of monthly forecasts for the symbol "PCAAS00" in the last 3 months of the year.

epf.get_prices_longterm(year=[2020, 2021], sector="Energy Transition", delivery_region="Europe")
# DataFrame of the annual forecasts for the years in ("2020", "2021"), where the sector is "Energy Transition" and the delivery region is "Europe".

EWindow Market Data

import spgci as ci
from datetime import date

ewmd = ci.EWindowMarketData()

ewmd.get_markets()
# DataFrame of Markets.

d = date(2023,2,13)
ewmd.get_botes(market=["EU BFOE", "US MidWest"], order_time=d)
# DataFrame of all BOTes in the markets ("EU BFOE", "US MidWest") on Feb 13, 2023.

World Oil Supply

import spgci as ci

wos = ci.WorldOilSupply()

countries = wos.get_reference_data(type=wos.RefTypes.Countries)
# DataFrame of all countries.

wos.get_ownership(country=countries['countryName'][:3], year=2040)
# DataFrame of Ownership for the first three countries from the countries endpoint and year "2040".

World Refinery Database

import spgci as ci

wrd = ci.WorldRefineryData()

wrd.get_yields(year=2020, owner="BP")
# DataFrame of yields for the year "2020" where "BP" is the refinery owner.

ref = wrd.get_reference_data(type=wrd.RefTypes.Refineries)
# DataFrame of all refineries.

az = ref[ref['Name'].str.contains("Al-Zour")]
wrd.get_runs(refinery_id=az["Id"])
# DataFrame of runs for the refineries with "Al-Zour" in the name.

wrd.get_outages(refinery_id=245)
# DataFrame of outages for refineryId 245.

Insights

import spgci as ci

ni = ci.Insights()

ni.get_stories(q="Suez", content_type=ni.ContentType.MarketCommentary)
# DataFrame of articles related to "Suez" where the content type is "Market Commentary".

ni.get_subscriber_notes(q="Naptha")
# DataFrame of all subscriber notes related to "Naptha".

ni.get_heards(q="Steel", content_type=ni.HeardsContentType.Heard, geography=['Europe', 'Middle East'], strip_html=True)
# DataFrame of all Heards related to "Steel" where the geography is in ("Europe", "Middle East") with HTML Tags removed from the headline and body.

Global Oil Demand

import spgci as ci

od = ci.GlobalOilDemand()

od.get_demand(country="Cambodia", product=["Naphtha", "Ethane"])
# DataFrame of forecast monthly demand for ("Naphtha", "Ethane") for Cambodia.

products = od.get_reference_data(type=od.RefTypes.Products)
# DataFrame of all "products" covered by Global Oil Demand dataset.

od.get_demand(product=products["productName"][:3], year_gte=2023)
# DataFrame of forecast monthly demand for the first 3 products in the previous DataFrame and the year >= 2023.

od.get_demand_archive(scenario_id=150, country="Norway")
# DataFrame of an archived (March 2023) forecast of monthly oil demand for Norway.

North America Natural Gas Analytics

import spgci as ci
from datetime import date

ng = ci.NANaturalGasAnalytics()

ng.get_pipelines(state="NJ", facility_type="Interconnect")
# DataFrame of pipelines in "NJ" with facility type "Interconnect"

ng.get_pipelines(pipeline_name="Algonquin")
# DataFrame of pipelines with name "Algonquin"

ng.get_pipeline_flows(pipeline_id=32)
# DataFrame of flows for pipeline_id 32 (Algonquin) for last 2 days.

d = date(2023, 7, 24)
ng.get_pipeline_flows(nomination_cycle="I2", gasdate=d)
# DataFrame of all pipeline flows during the I2 nomination cycle on gas date 2023-07-24

Global Integrated Energy Model

import spgci as ci

giem = ci.GlobalIntegratedEnergyModel()

giem.get_demand(country="Cambodia", product=["Naphtha", "Ethane"])
# DataFrame of energy demand for ("Naphtha", "Ethane") for Cambodia.

giem.get_demand_archive(scenario_id=559, country="Cambodia", product=["Naphtha", "Ethane"])
# DataFrame of an archived demand data of giem for Cambodia.

giem.get_reference_data(type=giem.RefTypes.Products)
# DataFrame of all "products" covered by Global Oil Demand dataset.

Refining Margins & Crude Arbitrage

import spgci as ci

af = ci.Arbflow()

af.get_margins_catalog(location_id = 34, crude_symbol="AAQZB00")
# DataFrame of refining margins catalog for ("AAQZB00") for Location Id 34.

af.get_margins_data(margin_id=229, margin_date='2023-08-16')
# DataFrame of refining margins data of arbflow for '2023-08-16'.

af.get_arbitrage(margin_id=[220,330], base_margin_id=1514, frequency_id=2)
# DataFrame of arbitrage data with frequencyId = 2 (Monthly).

af.get_reference_data(type=af.RefTypes.Locations)
# DataFrame of all "locations" covered by Refining Margins & Crude Arbitrage dataset.

LNG Global Analytics

import spgci as ci

lng = ci.LNGGlobalAnalytics()

lng.get_tenders(country_name="United States", paginate=True)
# DataFrame of tenders with country = 'United States'.

lng.get_tenders(contract_type="FOB", contract_option="Sell")
# DataFrame of tenders with ContractType = "FOB" and ContractOption = "Sell".

lng.get_liquefaction_projects()
# DataFrame of liquefaction projects.

lng.get_outages(liquefaction_project_name="ADNOC LNG")
# DataFrame of all LNG outages tied to the liquefaction project "ADNOC LNG".

lng.get_netbacks(date_gt="2024-01-01", import_geography="Brazil")
# DataFrame of all LNG Netbacks where import geography is 'Brazil' since Jan 1, 2024.

lng.get_supply_forecast_current(export_market="Indonesia")
# DataFrame of the current supply forecast for Indonesia

lng.get_demand_forecast_history(import_market="Japan", month="2024-12-01")
# DataFrame of all historical forecasts (one per month) of the LNG demand for Japan in December 2024.

lng.get_cargo_trips(trade_route="Suez Canal", date_loaded_gte="2024-01-01")
# DataFrame of trips through the Suez Canaal that loaded since 2024.

lng.get_cargo_events_partial_reexport()
# DataFrame of partial re-exports (a fraction of the delivered LNG is re-exported during transportation)

lng.get_assets_contracts_offtake_contracts(assumed_destination="Japan")
# DataFrame of offtake contracts headed to 'Japan'

lng.get_assets_contracts_liquefaction_trains(train_status=["Existing","Under Construction"])
# DataFrame of liquefaction trains which are either 'Existing' or 'Under Construction'

lng.get_gas_demand(market=["United States", "Mexico"], period_type="Monthly")
# DataFrame of gas demand for the different categories in the U.S. and Mexico on a monthly basis.

lng.get_power_generation(
    market=["India", "Pakistan", "Bangladesh"],
    source="Power Generation By Fuel",
    period_type="Monthly",
    paginate=True,
)
# DataFrame of power generation for India, Pakistan, Bangladesh by fuel type on a monthly basis.

lng.get_demand_forecast_short_term_current(import_market="France",month_gte="2025-01-01")
# DataFrame of short term demand forecast for import market of France starting January 1st 2025

lng.get_supply_forecast_short_term_current(export_market="Canada",month_gte="2025-01-01")
# DataFrame of short term supply forecast for export market of Canada starting January 1st 2025

Crude Analytics

import spgci as ci

ca = ci.CrudeAnalytics()

ca.get_country_scores(status="Current")
# DataFrame of latest scores for all countries.

ca.get_country_scores(country="United States")
# DataFrame of all (historical and current) scores for country = "United States".

ca.get_country_total_scores()
# DataFrame of aggregated scores, supply and capacity per date.

Weather

import spgci as ci

w = ci.Weather()

w.get_forecast(city="Boston")
# DataFrame of forecasts for Boston

w.get_forecast(market="United States", weather_date_gte="2024-01-01", weather_date_lte="2024-01-31")
# DateFrame of forecasts in the United States in January 2024.

w.get_actual(market="Hong Kong", paginate=True)
# DataFrame of actual weather in Hong Kong, paginate=True to get full history.

Structured Heards

import spgci as ci

sh = ci.StructuredHeards()

sh.get_markets()
# DataFrame of the list of markets that have structured heards.

sh.get_heards(market="Americas crude oil", heard_type="trade")
# DateFrame of heards in the Americas crude oil market that are of type 'trade'.

Chemicals Analysis and Forecasts

import spgci as ci

chem = ci.Chemicals()

chem.get_unique_values(dataset="production", columns=["commodity"])
# See the unique values for each field per dataset. Useful for finding out the exact values to fitler on for fields like commodity, region, etc..

chem.get_capacity_events(
    event_begin_date_gt="2023-01-01", country="China", event_type=["expand", "startup"]
)
# DataFrame of capacity events in plants in China, that are either "expand" or "startup" since 2023-01-01

chem.get_capacity_to_consume(is_active=[True, False], commodity="Polybutadiene rubber")
# DateFrame of capacities to consume. Setting `is_active` to [True, False] allows you to include records that were corrected or removed which is useful for Point-In-Time analysis.

chem.get_short_term_prices(commodity="Acetone", delivery_region="US Gulf Coast")
# DataFrame of short-term (monthly) price forecasts for Acetone delivered to the US Gulf Coast.

chem.get_outages(
    start_date_gte="2023-01-01",
    capacity_gte=500,
    alert_status=['Confirmed']
)
# DataFrame of chemical plant outages since Jan 1, 2023 where the capacity impacted is >= 500 and the status is `Confirmed`.

European Gas Analytics

import spgci as ci

egp = ci.EUGasAnalytics()

egp.get_daily_flow_point_selection(
    from_country="Norway",
    gas_day_gte="2024-10-01",
    gas_day_lte="2024-10-31",
    uom="MCM",
    direction="Net",
)
# DataFrame of all net flows out of Norway in October 2024 in Million Cubic Meters.


df = egp.get_overview_hub_balance(
    gas_day_gte="2024-10-01",
    gas_day_lte="2024-10-31",
    average_type="Daily value",
    hub="PEG",
    uom="MCM",
)
df.pivot_table(
    index=["hubFlowType", "hubSubFlowType"],
    columns="dayMonthOrdinal",
    values="quantity",
)
# DataFrame of hub balances for October 2024 for PEG in Million Cubic Meters
# Pivot Table shows this grouped by FlowType (demand, supply, storage, etc...) and +/- N Days.

Oil and NGL Analytics

import spgci as ci

rp = ci.OilNGLAnalytics()

rp.get_arbflow_arbitrage(from_region="Persian Gulf", to_region="Japan")
# DataFrame of arbitrage opportunities for commodities from the Persian Gulf to Japan by concept, commodity and date.

rp.get_arbflow_arbitrage(commodity="Jet Fuel", concept="incentive")
# DataFrame of arbitrage opportunities for Jet Fuel using the `incentive` concept.

rp.get_refinery_runs_latest(outlook_horizon="Short-Term", region="Latin America", report_for_date='2026-04-01')
# DataFrame of forecast monthly runs per country in Latin America for April 2026 for the most recent forecast.

rp.get_oil_inventory(
    commodity="Naphtha",
    outlook_horizon="Short-Term",
    geography="Amsterdam, Rotterdam and Antwerp",
    frequency='Monthly',
)
# DataFrame of oil inventory for ARA for Naptha, including the latest and historical forecasts.

Integrated Energy Scenarios

import spgci as ci

ies = ci.IntegratedEnergyScenarios()

ies.get_gdp(country="United States", scenario="Inflections 2024", year=2030)
# DataFrame of GDP forecasts for 2030, using the Inflections 2024 scenario, in both Nominal and Real and a PPP basis and not.

ies.get_unique_values(dataset="gdp", columns="scenario")
# DataFrame of unique values for `scenario` in the `get_gdp` method.

Agri and Food

import spgci as ci

agri = ci.AgriAndFood()

agri.get_cost_of_production(commodity="wheat",geography="India", year=2025)
# DataFrame of the cost of production of wheat in India for the year 2025.

agri.get_unique_values(dataset="cost-of-production", columns="commodity")
# DataFrame of unique values for `commodity` in the `get_cost_of_production` method.

agri.get_price_purchase_forecast(commodity="corn", reporting_region="United States", currency="USD",report_for_date_gte="2023-01-01", report_for_date_lte="2024-12-31")
# DataFrame of the price purchase forecast for corn in the United States in USD for the period from January 1, 2023 to December 31, 2024.

Americas Gas

import spgci as ci

na = ci.AmericasGas()

na.get_pipeline_flows(date_frequency="Monthly", subregion="New England", meter_type_primary="Power")
# Monthly pipeline flows for Power as a primary meter type in New England

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

spgci-0.0.57.tar.gz (114.0 kB view details)

Uploaded Source

Built Distribution

spgci-0.0.57-py3-none-any.whl (133.7 kB view details)

Uploaded Python 3

File details

Details for the file spgci-0.0.57.tar.gz.

File metadata

  • Download URL: spgci-0.0.57.tar.gz
  • Upload date:
  • Size: 114.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/2.1.1 CPython/3.12.9 Darwin/24.5.0

File hashes

Hashes for spgci-0.0.57.tar.gz
Algorithm Hash digest
SHA256 386b9aa1472531f036f666e01911bf1180d64e5943bca4aabaff162cbbb72174
MD5 240c38cdfb7cf6fda673445c2c41d7de
BLAKE2b-256 23c98ec16f45b3a81c768d21ce122e3ce07b2efe299c8b338c41a781b6c30f57

See more details on using hashes here.

File details

Details for the file spgci-0.0.57-py3-none-any.whl.

File metadata

  • Download URL: spgci-0.0.57-py3-none-any.whl
  • Upload date:
  • Size: 133.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/2.1.1 CPython/3.12.9 Darwin/24.5.0

File hashes

Hashes for spgci-0.0.57-py3-none-any.whl
Algorithm Hash digest
SHA256 7ab7bb4ffca33bd654dd2a674d05ebf98dfdf6ee13d98af8672c12c807754251
MD5 aca35e8b0a505d4b7358017776fb86b4
BLAKE2b-256 7e24ce55155f4e25fbd56cd39bc48ac7c6a9bd7901fb4261e2078ff162ff6a52

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page