This is a pre-production deployment of Warehouse, however changes made here WILL affect the production instance of PyPI.
Latest Version Dependencies status unknown Test status unknown Test coverage unknown
Project Description
Library for stacking(Stacked generalization)
============================================

|PyPI version| |license|

About this library(watch test folder for more detailed)
-------------------------------------------------------

1. Set train and test dataset under data/input.

2. Created features from original dataset need to be under
data/output/features.

3. Models for stacking are defined in scripts under scripts folder.

4. Need to define created features in that scripts.

5. Just run ``sh run.sh`` (``python scripts/XXX.py``)

--------------

Getting started: 30 seconds to stacking
---------------------------------------

--------------

Installation
------------

To install stacking, ``cd`` to the stacking folder and run the install
command:

::

sudo python setup.py install

You can also install stacking from PyPI:

::

pip install stacking

--------------

Tree of files
-------------

- base\_fixed\_fold.py (class of stacking)
- data/
- input/

- train.csv (train dataset)
- test.csv (test dataset)

- output/

- features/
- features.csv (features user created)
- temp/
- temp.csv (files saved in stacking)

- scripts/
- script.csv (main script where concrete models defined)

--------------

Details of scripts
------------------

- base.py:
- Base models for stacking are defined here (using
sklearn.base.BaseEstimator).
- Some models are defined here. e.g., XGBoost, Keras, Vowpal Wabbit.
- These models are wrapped as scikit-learn like (using
sklearn.base.ClassifierMixin, sklearn.base.RegressorMixin).
- That is, model class has some methods, fit(), predict\_proba(), and
predict().

New user-defined models can be added here.

Scikit-learn models can be used.

Base model have some arguments.

- 's': Stacking. Saving a oof(out-of-fold)
prediction({model\_name}\_all\_fold.csv) and average of test
prediction based on train-fold models({model\_name}\_test.csv). These
files will be used for next level stacking.

- 't': Training with all data and predict
test({model\_name}\_TestInAllTrainingData.csv). In this training, no
validation data are used.

- 'st': Stacking and then training with all data and predict test ('s'
and 't').

- 'cv': Only cross validation without saving the prediction.

Define several models and its parameters used for stacking. Define task
details on the top of script. Train and test feature set are defined
here. Need to define CV-fold index.

Any level stacking can be defined.

--------------

TODO LIST
---------

Need to be more general library.

Please check isuues!!

.. |PyPI version| image:: https://badge.fury.io/py/stacking.svg
:target: https://badge.fury.io/py/stacking
.. |license| image:: https://img.shields.io/github/license/mashape/apistatus.svg?maxAge=2592000
:target: https://github.com/ikki407/stacking/LICENSE
Release History

Release History

0.1.3

This version

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.1.2

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.1.1

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

0.1.0

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

Download Files

Download Files

TODO: Brief introduction on what you do with files - including link to relevant help section.

File Name & Checksum SHA256 Checksum Help Version File Type Upload Date
stacking-0.1.3.tar.gz (12.5 kB) Copy SHA256 Checksum SHA256 Source Jul 20, 2016

Supported By

WebFaction WebFaction Technical Writing Elastic Elastic Search Pingdom Pingdom Monitoring Dyn Dyn DNS HPE HPE Development Sentry Sentry Error Logging CloudAMQP CloudAMQP RabbitMQ Heroku Heroku PaaS Kabu Creative Kabu Creative UX & Design Fastly Fastly CDN DigiCert DigiCert EV Certificate Rackspace Rackspace Cloud Servers DreamHost DreamHost Log Hosting