Skip to main content
This is a pre-production deployment of Warehouse. Changes made here affect the production instance of PyPI (pypi.python.org).
Help us improve Python packaging - Donate today!

TensorFlow model and data management tool

Project Description
.. raw:: html

<p align="center">
<img src="logo.png">
</p>

|Hex.pm| |Build.pm|

Studio is a model management framework written in Python to help simplify and expedite your model building experience. It was developed to minimize the overhead involved with scheduling, running, monitoring and managing artifacts of your machine learning experiments. No one wants to spend their time configuring different machines, setting up dependencies, or playing archeologist to track down previous model artifacts.

Most of the features are compatible with any Python machine learning
framework (`Keras <https://github.com/fchollet/keras>`__,
`TensorFlow <https://github.com/tensorflow/tensorflow>`__,
`PyTorch <https://github.com/pytorch/pytorch>`__,
`scikit-learn <https://github.com/scikit-learn/scikit-learn>`__, etc);
some extra features are available for Keras and TensorFlow.

**Use Studio to:**

* Capture experiment information- Python environment, files, dependencies and logs- without modifying the experiment code.
* Monitor and organize experiments using a web dashboard that integrates with TensorBoard.
* Run experiments locally, remotely, or in the cloud (Google Cloud or Amazon EC2)
* Manage artifacts
* Perform hyperparameter search
* Create customizable Python environments for remote workers.

NOTE: ``studio`` package is compatible with Python 2 and 3!

Example usage
-------------

Start visualizer:

::

studio ui

Run your jobs:

::

studio run train_mnist_keras.py

You can see results of your job at http://127.0.0.1:5000. Run
``studio {ui|run} --help`` for a full list of ui / runner options

Installation
------------

pip install studioml from the master pypi repositry:

::

pip install studioml

Find more `details <docs/installation.rst>`__ on installation methods and the release process.

Authentication
--------------

Currently Studio supports 2 methods of authentication: `email / password <docs/authentication.rst#email--password-authentication>`__ and using a `Google account. <docs/authentication.rst#google-account-authentication>`__ To use studio runner and studio ui in guest
mode, in studio/default\_config.yaml, uncomment "guest: true" under the
database section.

Alternatively, you can set up your own database and configure Studio to
use it. See `setting up database <docs/setup_database.rst>`__. This is a
preferred option if you want to keep your models and artifacts private.


Further reading and cool features
---------------------------------

- `Running experiments remotely <docs/remote_worker.rst>`__

- `Custom Python environments for remote workers <docs/customenv.rst>`__

- `Running experiments in the cloud <docs/cloud.rst>`__

- `Google Cloud setup instructions <docs/gcloud_setup.rst>`__

- `Amazon EC2 setup instructions <docs/ec2_setup.rst>`__

- `Artifact management <docs/artifacts.rst>`__
- `Hyperparameter search <docs/hyperparams.rst>`__
- `Pipeline for trained models <docs/model_pipelines.rst>`__

.. |Hex.pm| image:: https://img.shields.io/hexpm/l/plug.svg
:target: https://github.com/studioml/studio/blob/master/LICENSE

.. |Build.pm| image:: https://travis-ci.org/studioml/studio.svg?branch=master
:target: https://travis-ci.org/studioml/studio.svg?branch=master
Release History

Release History

History Node

0.0.11.post83

History Node

0.0.11.post81

History Node

0.0.11.post80

History Node

0.0.11.post79

History Node

0.0.11.post78

History Node

0.0.11.post77

History Node

0.0.11.post75

History Node

0.0.11.post74

History Node

0.0.11.post72

History Node

0.0.11.post71

History Node

0.0.11.post70

History Node

0.0.11.post69

History Node

0.0.11.post68

History Node

0.0.11.post65

History Node

0.0.11.post58

History Node

0.0.11.post57

History Node

0.0.11.post56

History Node

0.0.11.post54

History Node

0.0.11.post53

History Node

0.0.10.post234

History Node

0.0.10.post210

History Node

0.0.10

History Node

0.0.9.post213

History Node

0.0.9.post212

History Node

0.0.9.post203

History Node

0.0.9.post201

History Node

0.0.9.post199

History Node

0.0.9.post139

History Node

0.0.9.post137

History Node

0.0.9.post136

History Node

0.0.9.post135

History Node

0.0.9.post134

This version
History Node

0.0.9.post117

History Node

0.0.9.post116

History Node

0.0.9.post115

History Node

0.0.9.post112

History Node

0.0.9.post107

History Node

0.0.9.post105

History Node

0.0.9.post95

History Node

0.0.9.post94

History Node

0.0.9.post92

History Node

0.0.9.post90

History Node

0.0.9

History Node

0.0.8

History Node

0.0.7

History Node

0.0.5

History Node

0.0.4

History Node

0.0.3.post9

History Node

0.0.3.post8

History Node

0.0.3.post7

History Node

0.0.3.post6

History Node

0.0.3.post5

History Node

0.0.3.post4

History Node

0.0.3.post3

History Node

0.0.3.post2

History Node

0.0.3.dev9215245980

History Node

0.0.3.dev9

History Node

0.0.2.post456

History Node

0.0.2.post455

History Node

0.0.2.post450

History Node

0.0.2.post448

History Node

0.0.2.post447

History Node

0.0.2.post446

History Node

0.0.2.post441

History Node

0.0.2.dev8102275074

History Node

0.0.2.dev438

History Node

0.0.2.dev4

History Node

0.0.2.dev3

History Node

0.0.2.dev2

History Node

0.0.2.dev1

History Node

0.0.2.dev0

History Node

0.0.1.post17

History Node

0.0.1.post16

History Node

0.0.1.post15

History Node

0.0.1.post14

History Node

0.0.1.post13

History Node

0.0.1.post12

History Node

0.0.1

History Node

0.0.1.dev0

History Node

0.0.0

Download Files

Download Files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

File Name & Checksum SHA256 Checksum Help Version File Type Upload Date
studioml-0.0.9.post117.tar.gz (290.7 kB) Copy SHA256 Checksum SHA256 Source Nov 14, 2017

Supported By

WebFaction WebFaction Technical Writing Elastic Elastic Search Pingdom Pingdom Monitoring Dyn Dyn DNS Sentry Sentry Error Logging CloudAMQP CloudAMQP RabbitMQ Heroku Heroku PaaS Kabu Creative Kabu Creative UX & Design Fastly Fastly CDN DigiCert DigiCert EV Certificate Rackspace Rackspace Cloud Servers DreamHost DreamHost Log Hosting