Skip to main content

Format agnostic tabular data library (XLS, JSON, YAML, CSV)

Project description

Tablib: format-agnostic tabular dataset library

_____         ______  ___________ ______
__  /_______ ____  /_ ___  /___(_)___  /_
_  __/_  __ `/__  __ \__  / __  / __  __ \
/ /_  / /_/ / _  /_/ /_  /  _  /  _  /_/ /
\__/  \__,_/  /_.___/ /_/   /_/   /_.___/

Tablib is a format-agnostic tabular dataset library, written in Python.

Output formats supported:

  • Excel

  • JSON

  • YAML

  • CSV

At this time, Tablib supports the export of it’s powerful Dataset object instances into any of the above formats. Import is underway.

Note that tablib purposefully excludes XML support. It always will.

Usage

Populate fresh data files:

headers = ('first_name', 'last_name')

data = [
    ('John', 'Adams'),
    ('George', 'Washington')
]

data = tablib.Dataset(*data, headers=headers)

Intelligently add new rows:

>>> data.append(('Henry', 'Ford'))

Intelligently add new columns:

>>> data.append(col=('age', 90, 67, 83))

Slice rows:

>>> print data[:2]
[('John', 'Adams', 90), ('George', 'Washington', 67)]

Slice columns by header:

>>> print data['first_name']
['John', 'George', 'Henry']

Easily delete rows:

>>> del data[1]

Drumroll please………..

JSON!

>>> print data.json()
[
  {
    "last_name": "Adams",
    "age": 90,
    "first_name": "John"
  },
  {
    "last_name": "Ford",
    "age": 83,
    "first_name": "Henry"
  }
]

YAML!

>>> print data.yaml()
- {age: 90, first_name: John, last_name: Adams}
- {age: 83, first_name: Henry, last_name: Ford}

CSV…

>>> print data.csv()
first_name,last_name,age
John,Adams,90
Henry,Ford,83

EXCEL!

>>> data.xls('people.xls')

It’s that easy.

Installation

To install tablib, simply:

$ pip install tablib

Or, if you absolutely must:

$ easy_install tablib

Contribute

If you’d like to contribute, simply fork the repository, commit your changes to the develop branch (or branch off of it), and send a pull request. Make sure you add yourself to AUTHORS.

Roadmap

  • Add ability to add/remove full columns

  • Import datasets from CSV, JSON, YAML

  • Release CLI Interface

  • Auto-detect import format

  • Add possible other exports (SQL?)

  • Possibly plugin-ify format architecture

  • Ability to assign types to rows (set, regex=, &c.)

  • Plugin support

History

0.7.0 (2010-09-20)

  • Renamed DataBook Databook for consistiency.

  • Export properties changed to methods (XLS filename / StringIO bug).

  • Optional Dataset.xls(path=’filename’) support (for writing on windows).

  • Added utf-8 on the worksheet level.

0.6.4 (2010-09-19)

  • Updated unicode export for XLS.

  • More exhaustive unit tests.

0.6.3 (2010-09-14)

  • Added Dataset.append() support for columns.

0.6.2 (2010-09-13)

  • Fixed Dataset.append() error on empty dataset.

  • Updated Dataset.headers property w/ validation.

  • Added Testing Fixtures.

0.6.1 (2010-09-12)

  • Packaging hotfixes.

0.6.0 (2010-09-11)

  • Public Release.

  • Export Support for XLS, JSON, YAML, and CSV.

  • DataBook Export for XLS, JSON, and YAML.

  • Python Dict Property Support.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tablib-0.7.0.tar.gz (9.2 kB view details)

Uploaded Source

File details

Details for the file tablib-0.7.0.tar.gz.

File metadata

  • Download URL: tablib-0.7.0.tar.gz
  • Upload date:
  • Size: 9.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for tablib-0.7.0.tar.gz
Algorithm Hash digest
SHA256 7ab72bf759be998381ee796179df8fb7f30bad93c726f161c097136d42230a23
MD5 e82b33af897cd36dfac64ec94efbe7c7
BLAKE2b-256 83f3336afc602f6679a5a4e0c302a0b03f8d255a5e1ade5bf276a1948bf3db01

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page