This is a pre-production deployment of Warehouse, however changes made here WILL affect the production instance of PyPI.
Latest Version Dependencies status unknown Test status unknown Test coverage unknown
Project Description

# Alignment target coverage analysis tool

## Input - BAM file(s) (or FastQ files). - BED file (optional).

## Output - summary.html – sample-level coverage statistics and plots. - summary.tsv – sample-level coverage, parsable version - regions.txt – region-level coverage statistics.

## Installation ` git clone --recursive https://github.com/vladsaveliev/TargQC cd TargQC python setup.py install `

If you are not an administator in your system, create a virtual environment first: ` virtualenv venv source venv/bin/activate `

## Usage ` targqc *.bam --bed target.bed -g hg19 -o targqc_results ` The results will be written to targqc_results folder.

The BED file may be omitted. In this case statistics reported will be based of off the whole genome.

## FastQ and downsampled coverage Instead of the BAM files, input FastQ are also allowed. The reads will be aligned by BWA to the reference genome specified by –bwa-prefix. Option –downsample-to N (default value 5e5) specifies the number ofread pairs will be randomly selected from each input set. This feature allows to quickly estimate approximate coverage quality before full alignment. To turn downsampling off and align all reads, set –downsample-to off. ` targqc *.fastq --bed target.bed -g hg19 -o targqc_results --bwa-prefix /path/to/ref.bwa `

## Parallel running ### Threads Run using 3 threads: ` targqc *.bam --bed target.bed -g hg19 -o targqc_results -t 3 ` ### Cluster Run using 3 jobs, using SGE scheduler, and queue “queue”: ` targqc *.bam --bed target.bed -g hg19 -o targqc_results -t 3 -s sge -q queue -r pename=smp ` If the number of samples is higher than the requested number of jobs, the processes within job will be additionally parallelized using threads, so the full number of occupied cores will equal the number of requested threads (-t)

Other supported schedulers: Platform LSF (“lsf”), Sun Grid Engine (“sge”), Torque (“torque”), SLURM (“slurm”) (see details at https://github.com/roryk/ipython-cluster-helper)

## For HPC users ` module load python export PATH=/group/ngs/src/TargQC/venv/bin:$PATH `

Release History

Release History

1.1.0

This version

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

1.0.0a15

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

Download Files

Download Files

TODO: Brief introduction on what you do with files - including link to relevant help section.

File Name & Checksum SHA256 Checksum Help Version File Type Upload Date
targqc-1.1.0.tar.gz (128.9 kB) Copy SHA256 Checksum SHA256 Source Aug 11, 2016

Supported By

WebFaction WebFaction Technical Writing Elastic Elastic Search Pingdom Pingdom Monitoring Dyn Dyn DNS HPE HPE Development Sentry Sentry Error Logging CloudAMQP CloudAMQP RabbitMQ Heroku Heroku PaaS Kabu Creative Kabu Creative UX & Design Fastly Fastly CDN DigiCert DigiCert EV Certificate Rackspace Rackspace Cloud Servers DreamHost DreamHost Log Hosting