Skip to main content

A low-code interpretable machine learning toolbox in Python.

Project description

PiML: a low-code interpretable machine learning toolbox in Python

PiML (or π·ML, /ˈpaɪ·ˈem·ˈel/) is a new Python toolbox for Interpretable Machine Learning model development and validation. Through low-code automation and high-code programming, PiML supports various machine learning models in the following two categories:

  • Inherently interpretable models:
  1. EBM: Explainable Boosting Machine (Nori, et al. 2019; Lou, et al. 2013)
  2. GAMI-Net: Generalized Additive Model with Structured Interactions (Yang, Zhang and Sudjianto, 2021)
  3. ReLU-DNN: Deep ReLU Networks using Aletheia Unwrapper (Sudjianto, et al. 2020)
  • Arbitrary black-box models,e.g.
  1. LightGBM or XGBoost of varying depth
  2. RandomForest of varying depth
  3. Residual Deep Neural Networks

Low-code Examples

Click the ipynb links to run examples in Google Colab:

  1. BikeSharing data: ipynb
  2. CaliforniaHousing data: ipynb
  3. TaiwanCredit data: ipynb

Begin your own PiML journey with this demo notebook.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

PiML-0.2.2-cp39-none-win_amd64.whl (5.6 MB view details)

Uploaded CPython 3.9Windows x86-64

PiML-0.2.2-cp39-none-manylinux_2_17_x86_64.whl (7.6 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

PiML-0.2.2-cp39-none-macosx_10_14_x86_64.whl (7.1 MB view details)

Uploaded CPython 3.9macOS 10.14+ x86-64

PiML-0.2.2-cp38-none-win_amd64.whl (5.7 MB view details)

Uploaded CPython 3.8Windows x86-64

PiML-0.2.2-cp38-none-manylinux_2_17_x86_64.whl (7.9 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

PiML-0.2.2-cp38-none-macosx_10_14_x86_64.whl (7.9 MB view details)

Uploaded CPython 3.8macOS 10.14+ x86-64

PiML-0.2.2-cp37-none-win_amd64.whl (5.4 MB view details)

Uploaded CPython 3.7Windows x86-64

PiML-0.2.2-cp37-none-manylinux_2_17_x86_64.whl (7.5 MB view details)

Uploaded CPython 3.7manylinux: glibc 2.17+ x86-64

PiML-0.2.2-cp37-none-macosx_10_14_x86_64.whl (7.7 MB view details)

Uploaded CPython 3.7macOS 10.14+ x86-64

File details

Details for the file PiML-0.2.2-cp39-none-win_amd64.whl.

File metadata

  • Download URL: PiML-0.2.2-cp39-none-win_amd64.whl
  • Upload date:
  • Size: 5.6 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.7.6

File hashes

Hashes for PiML-0.2.2-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 4a64944bde669fcc0ae919708b899ae9efd524475d327dc4f8a02979d88d69a8
MD5 ee9f3f90e7b59a9cde92a2d573cfed17
BLAKE2b-256 c971e5e7dc1a79597bb1ca7daa33764bcaff57d24b609571db5c9d4f7f444fda

See more details on using hashes here.

File details

Details for the file PiML-0.2.2-cp39-none-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for PiML-0.2.2-cp39-none-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 1f82a4e132bfa6e6bfd22c811c453918f51ca575b9c2d1e8f3bff873a79c708c
MD5 57e529a3cdf14b0f9d142014b1470776
BLAKE2b-256 527cf67912e03afc6c8f8ed717fe6a0813f4782ec9f2fd737ba341e53304c96d

See more details on using hashes here.

File details

Details for the file PiML-0.2.2-cp39-none-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for PiML-0.2.2-cp39-none-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 8bd5d25f7729c1d2bf11f9b12f7af697c3c4ce3a98ae17e65451e844c3c87f23
MD5 55a3a558f448e765bbe04d01ada7a7f4
BLAKE2b-256 b60eae5d7380a3e4fcc815bcfd354f2818a0a300e6f979e5fe39e3d3ec085e1d

See more details on using hashes here.

File details

Details for the file PiML-0.2.2-cp38-none-win_amd64.whl.

File metadata

  • Download URL: PiML-0.2.2-cp38-none-win_amd64.whl
  • Upload date:
  • Size: 5.7 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.7.6

File hashes

Hashes for PiML-0.2.2-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 690e28f78c98c25a6ba0d56ec1cecdcbaad3e81ec6ab56e14ac3d3764567f8cb
MD5 822a9e500ffb8ef8df5bd24245eea820
BLAKE2b-256 d7c9bd2658007af86a9c603a292cbd22c3c3ab16936dcf375088370c11b4a3d1

See more details on using hashes here.

File details

Details for the file PiML-0.2.2-cp38-none-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for PiML-0.2.2-cp38-none-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 1fec99f81397f36346779c9104f2eeed8a24acecd612e055451b37ae52791558
MD5 bde617024c9f7f2fe587dbe0b9cc928a
BLAKE2b-256 925acdfcde7fdfde6ace3bdf4d7973002cdf47ecdd4734032f5b28fdf119c5c5

See more details on using hashes here.

File details

Details for the file PiML-0.2.2-cp38-none-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for PiML-0.2.2-cp38-none-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 9399401b2a79c01ddb59a13cba59df0f0fb4df84051326462ecfeb7a77bc3e01
MD5 81371002669de63cfd16c9f0f8ae6c29
BLAKE2b-256 b6ef0eec6ffa5dfed34054bc93155768c49268374174d90e8e5ac4d857f8d418

See more details on using hashes here.

File details

Details for the file PiML-0.2.2-cp37-none-win_amd64.whl.

File metadata

  • Download URL: PiML-0.2.2-cp37-none-win_amd64.whl
  • Upload date:
  • Size: 5.4 MB
  • Tags: CPython 3.7, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.7.6

File hashes

Hashes for PiML-0.2.2-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 aba5d5e28021088f53ce5a6b1c9e97103916ab3e245411122780030ac99887a4
MD5 c75e1b09751ff7ad28ea0401349ac99d
BLAKE2b-256 9a942fc2606792a807c08be1705fbc57a84db9ef1f9ff7b31ae3c8065397c2ee

See more details on using hashes here.

File details

Details for the file PiML-0.2.2-cp37-none-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for PiML-0.2.2-cp37-none-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 000ae74cac07edc65ed48f5c80943e0250ed64f18e4c4e616e6e12fd7f2d3ea7
MD5 5b4a43d3d3b25fae488045cca21a920d
BLAKE2b-256 37185216c6f599c8bf33eb6ce8678f4d7f770b3b53d99755a76213de162582e1

See more details on using hashes here.

File details

Details for the file PiML-0.2.2-cp37-none-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for PiML-0.2.2-cp37-none-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 06aef0b06cc03ced44f8e0c30e3b9902dc87afbbd1ea09e84edaf590783b2291
MD5 fafdb3b44422a36cdce89ece681b6a36
BLAKE2b-256 03cdd9740f5ed1bc135131aa628904f121a0ffadc6bc66c2a167a78be378afb0

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page