Skip to main content

A low-code interpretable machine learning toolbox in Python.

Project description

drawing

An integrated Python toolbox for interpretable machine learning

pip install PiML

🚀 October 31, 2022: V0.4.0 is released with enriched models and enhanced diagnostics.

🚀 July 26, 2022: V0.3.0 is released with classic statistical models.

🚀 June 26, 2022: V0.2.0 is released with high-code APIs.

📢 May 4, 2022: V0.1.0 is launched with low-code UI/UX.

PiML (or π-ML, /ˈpaɪ·ˈem·ˈel/) is a new Python toolbox for interpretable machine learning model development and validation. Through low-code interface and high-code APIs, PiML supports a growing list of inherently interpretable ML models:

  1. GLM: Linear/Logistic Regression with L1 ∨ L2 Regularization
  2. GAM: Generalized Additive Models using B-splines
  3. Tree: Decision Tree for Classification and Regression
  4. FIGS: Fast Interpretable Greedy-Tree Sums (Tan, et al. 2022)
  5. XGB2: Extreme Gradient Boosted Trees of Depth 2 (Chen and Guestrin, 2016; Lengerich, et al. 2020)
  6. EBM: Explainable Boosting Machine (Nori, et al. 2019; Lou, et al. 2013)
  7. GAMI-Net: Generalized Additive Model with Structured Interactions (Yang, Zhang and Sudjianto, 2021)
  8. ReLU-DNN: Deep ReLU Networks using Aletheia Unwrapper and Sparsification (Sudjianto, et al. 2020)

PiML also works for arbitrary supervised ML models under regression and binary classification settings. It supports a whole spectrum of outcome testing, including but not limited to, the following:

  1. Accuracy: popular metrics like MSE, MAE for regression tasks and ACC, AUC, Recall, Precision, F1-score for binary classification tasks.
  2. Explainability: post-hoc global explainers (PFI, PDP, ALE) and local explainers (LIME, SHAP).
  3. Fairness: disparity test and segmented analysis by integrating the solas-ai package.
  4. WeakSpot: identification of weak regions with high residuals by slicing techniques.
  5. Overfit: identification of overfitting regions according ot train-test performance gap.
  6. Reliability: assessment of prediction uncertainty by split conformal prediction techniques.
  7. Robustness: evaluation of performance degradation under covariate noise perturbation.
  8. Resilience: evaluation of performance degradation under different out-of-distribution scenarios.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

PiML-0.5.1.post0-cp310-none-win_amd64.whl (7.2 MB view details)

Uploaded CPython 3.10Windows x86-64

PiML-0.5.1.post0-cp310-none-manylinux_2_17_x86_64.whl (11.2 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

PiML-0.5.1.post0-cp310-none-macosx_11_0_arm64.whl (9.0 MB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

PiML-0.5.1.post0-cp310-none-macosx_10_12_x86_64.whl (9.3 MB view details)

Uploaded CPython 3.10macOS 10.12+ x86-64

PiML-0.5.1.post0-cp39-none-win_amd64.whl (7.6 MB view details)

Uploaded CPython 3.9Windows x86-64

PiML-0.5.1.post0-cp39-none-manylinux_2_5_x86_64.whl (11.6 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.5+ x86-64

PiML-0.5.1.post0-cp39-none-macosx_11_0_arm64.whl (8.9 MB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

PiML-0.5.1.post0-cp39-none-macosx_10_12_x86_64.whl (9.2 MB view details)

Uploaded CPython 3.9macOS 10.12+ x86-64

PiML-0.5.1.post0-cp38-none-win_amd64.whl (7.6 MB view details)

Uploaded CPython 3.8Windows x86-64

PiML-0.5.1.post0-cp38-none-manylinux_2_17_x86_64.whl (11.6 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

PiML-0.5.1.post0-cp38-none-macosx_11_0_arm64.whl (9.4 MB view details)

Uploaded CPython 3.8macOS 11.0+ ARM64

PiML-0.5.1.post0-cp38-none-macosx_10_12_x86_64.whl (10.2 MB view details)

Uploaded CPython 3.8macOS 10.12+ x86-64

PiML-0.5.1.post0-cp37-none-win_amd64.whl (7.2 MB view details)

Uploaded CPython 3.7Windows x86-64

PiML-0.5.1.post0-cp37-none-manylinux_2_17_x86_64.whl (11.1 MB view details)

Uploaded CPython 3.7manylinux: glibc 2.17+ x86-64

PiML-0.5.1.post0-cp37-none-macosx_10_12_x86_64.whl (10.0 MB view details)

Uploaded CPython 3.7macOS 10.12+ x86-64

File details

Details for the file PiML-0.5.1.post0-cp310-none-win_amd64.whl.

File metadata

  • Download URL: PiML-0.5.1.post0-cp310-none-win_amd64.whl
  • Upload date:
  • Size: 7.2 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.7.13

File hashes

Hashes for PiML-0.5.1.post0-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 c940b6522434888c742f56141c7d5613687723874fc54c87de01a41e08fe26d4
MD5 57b64b2a7d1c6a153fc6fd77cc1b9585
BLAKE2b-256 cb67269ddc202fdefbc36087bd1171568859ae478b66d1bb6fc589a163457729

See more details on using hashes here.

File details

Details for the file PiML-0.5.1.post0-cp310-none-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for PiML-0.5.1.post0-cp310-none-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 e42cabb9bfced37bb0817f932dd56a5c5cbeba820d9e7ae623e56c2947807239
MD5 2cbe49a90a7196d629e61cd8c34a80f7
BLAKE2b-256 93fb01e94b0a616f80328ba400deadea43cb7d55c1acddc99950cafe62e60a2d

See more details on using hashes here.

File details

Details for the file PiML-0.5.1.post0-cp310-none-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for PiML-0.5.1.post0-cp310-none-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b846ef10d8ea22373e2d0c76561e783e4a57eed89291cc3f65398334c1a46b8a
MD5 e73929bfe2dd0a7ae45774df3ace94ab
BLAKE2b-256 3f24f777c36b2afe8b1b7ee5fbf501a43752fd76bae6339e373f42f6a4e7d1e1

See more details on using hashes here.

File details

Details for the file PiML-0.5.1.post0-cp310-none-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for PiML-0.5.1.post0-cp310-none-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 42e948c59321e0a512881f7e7d3094b4d5775e8257c00d5a31147d7574fdb775
MD5 72464e951c900a9cf7f8e429dec3ee54
BLAKE2b-256 86722ee01debb325aaddbedcd3c70ec7e96ae169626f98f84e3633d9f63b2b98

See more details on using hashes here.

File details

Details for the file PiML-0.5.1.post0-cp39-none-win_amd64.whl.

File metadata

  • Download URL: PiML-0.5.1.post0-cp39-none-win_amd64.whl
  • Upload date:
  • Size: 7.6 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.7.13

File hashes

Hashes for PiML-0.5.1.post0-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 cb34c66a9401344c3a781e97450ec3092f6ef4dc3314727d9a4165cf506416da
MD5 3b4e0e4e9307cfc94b0bd20ed0d1d8b3
BLAKE2b-256 73aaa87d37626e1a3da20724020b56e1498aba69caa648bf24dd8ce536d47faf

See more details on using hashes here.

File details

Details for the file PiML-0.5.1.post0-cp39-none-manylinux_2_5_x86_64.whl.

File metadata

File hashes

Hashes for PiML-0.5.1.post0-cp39-none-manylinux_2_5_x86_64.whl
Algorithm Hash digest
SHA256 bc02843df0bd5ccc2a65b64d24ee85bdc6dd49624490b97703e23ac925f98494
MD5 0fb812659c71b1b749c7bee92c6bd576
BLAKE2b-256 5ef1b77b720dd2aca2ef656d13515c6ac1af2581b281c6de5dec2361eb2cd222

See more details on using hashes here.

File details

Details for the file PiML-0.5.1.post0-cp39-none-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for PiML-0.5.1.post0-cp39-none-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f07d20c5ded8bf49ae2c952ebb29ef7b8d0ffe5f1be4950368834911c3dde008
MD5 f485e49cbfc09b4f06b7cd1412f5083a
BLAKE2b-256 c7d5a9029b99b6d589450b79796071623c876a13bd360b90f0fe2b4f8207541f

See more details on using hashes here.

File details

Details for the file PiML-0.5.1.post0-cp39-none-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for PiML-0.5.1.post0-cp39-none-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 cacae2731b2034f1c6cd6326b282139fca3ce75348f5f437201c17d7305dd5a1
MD5 461959cd32a28028ffd6e56e991340a8
BLAKE2b-256 06ae613dbffce73593aa8a19a86e4fda440e861f9d25db4e1411580bfcf79e7a

See more details on using hashes here.

File details

Details for the file PiML-0.5.1.post0-cp38-none-win_amd64.whl.

File metadata

  • Download URL: PiML-0.5.1.post0-cp38-none-win_amd64.whl
  • Upload date:
  • Size: 7.6 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.7.13

File hashes

Hashes for PiML-0.5.1.post0-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 fedee03f25f78224cd33a987d5b5dcd57c7c694fb55d19960d7c87f7a463583f
MD5 fa16ca109d3393995db41d135eb50a70
BLAKE2b-256 702669b8ba447e675129d60ac5e0e4010b9eb93a3a371bcd3f617b3720c573ab

See more details on using hashes here.

File details

Details for the file PiML-0.5.1.post0-cp38-none-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for PiML-0.5.1.post0-cp38-none-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 bfe6f15c1a1e596968d5791b12c8fe9f59c3b433a2734748612bd302163eb8df
MD5 cf438fbe60e8df1114185f7bcd729a1a
BLAKE2b-256 d6c120fccacdbf71fb88d70a81d3a3630af9eadfb27ad65220254fd6881703e5

See more details on using hashes here.

File details

Details for the file PiML-0.5.1.post0-cp38-none-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for PiML-0.5.1.post0-cp38-none-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3591723d3ad2e58f316a7d7ce74d2bf01e3a6a1ad59dee2a024880b018f314c0
MD5 27edceeb905700d062b2e4082edf6eb2
BLAKE2b-256 6fbc1c9cd5d6771bb58678a893e3bb3936e550e07a2bb8be84135ac22ad49219

See more details on using hashes here.

File details

Details for the file PiML-0.5.1.post0-cp38-none-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for PiML-0.5.1.post0-cp38-none-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 1fce5fc1893553af03730c6db9ccc4172acc25552ea009d668e5f92c1fa622fe
MD5 94cd8077a9221d65608528c071226497
BLAKE2b-256 0aff048c0cc7a2a80d24befe1d776c5fab0deb8ebc357b66871e1a1a5a839848

See more details on using hashes here.

File details

Details for the file PiML-0.5.1.post0-cp37-none-win_amd64.whl.

File metadata

  • Download URL: PiML-0.5.1.post0-cp37-none-win_amd64.whl
  • Upload date:
  • Size: 7.2 MB
  • Tags: CPython 3.7, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.7.13

File hashes

Hashes for PiML-0.5.1.post0-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 6400e3cb1e1c6039a67573cafe1360d2c0dfc6d0047e406f1b4a6f5cf289dcbf
MD5 bf2c504125358db55edc6b3e4baff7fa
BLAKE2b-256 c7f4565faa459e9f250c5f2a29fa78874c4d9c31610b95f16ff0e9848ac84c1f

See more details on using hashes here.

File details

Details for the file PiML-0.5.1.post0-cp37-none-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for PiML-0.5.1.post0-cp37-none-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 10f7406cf445cd6e980b2b4ccf6c2a6c16a7404ab7979eb15bd562cd248310b4
MD5 db974ba69e87572adccb7f9ba7721978
BLAKE2b-256 702b85be826f3a87a077f780699f65c17dc43e14d1aa57b2821297cb4c3a9681

See more details on using hashes here.

File details

Details for the file PiML-0.5.1.post0-cp37-none-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for PiML-0.5.1.post0-cp37-none-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 71629d1a2c52e281b558d374eae06a27714fecb8f99a4296e1a835a07b522a5d
MD5 dbe5679d83f1093e893f6353bb922b03
BLAKE2b-256 d498b80d2a0c83119869eb5f459fb28e17db4af9e79cd23e98a06c506eeab0f1

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page