Skip to main content

A low-code interpretable machine learning toolbox in Python.

Project description

drawing

An integrated Python toolbox for interpretable machine learning

pip install PiML

🚀 October 31, 2022: V0.4.0 is released with enriched models and enhanced diagnostics.

🚀 July 26, 2022: V0.3.0 is released with classic statistical models.

🚀 June 26, 2022: V0.2.0 is released with high-code APIs.

📢 May 4, 2022: V0.1.0 is launched with low-code UI/UX.

PiML (or π-ML, /ˈpaɪ·ˈem·ˈel/) is a new Python toolbox for interpretable machine learning model development and validation. Through low-code interface and high-code APIs, PiML supports a growing list of inherently interpretable ML models:

  1. GLM: Linear/Logistic Regression with L1 ∨ L2 Regularization
  2. GAM: Generalized Additive Models using B-splines
  3. Tree: Decision Tree for Classification and Regression
  4. FIGS: Fast Interpretable Greedy-Tree Sums (Tan, et al. 2022)
  5. XGB2: Extreme Gradient Boosted Trees of Depth 2 (Chen and Guestrin, 2016; Lengerich, et al. 2020)
  6. EBM: Explainable Boosting Machine (Nori, et al. 2019; Lou, et al. 2013)
  7. GAMI-Net: Generalized Additive Model with Structured Interactions (Yang, Zhang and Sudjianto, 2021)
  8. ReLU-DNN: Deep ReLU Networks using Aletheia Unwrapper and Sparsification (Sudjianto, et al. 2020)

PiML also works for arbitrary supervised ML models under regression and binary classification settings. It supports a whole spectrum of outcome testing, including but not limited to, the following:

  1. Accuracy: popular metrics like MSE, MAE for regression tasks and ACC, AUC, Recall, Precision, F1-score for binary classification tasks.
  2. Explainability: post-hoc global explainers (PFI, PDP, ALE) and local explainers (LIME, SHAP).
  3. Fairness: disparity test and segmented analysis by integrating the solas-ai package.
  4. WeakSpot: identification of weak regions with high residuals by slicing techniques.
  5. Overfit: identification of overfitting regions according ot train-test performance gap.
  6. Reliability: assessment of prediction uncertainty by split conformal prediction techniques.
  7. Robustness: evaluation of performance degradation under covariate noise perturbation.
  8. Resilience: evaluation of performance degradation under different out-of-distribution scenarios.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

PiML-0.4.1.post0-cp39-none-win_amd64.whl (10.9 MB view details)

Uploaded CPython 3.9Windows x86-64

PiML-0.4.1.post0-cp39-none-manylinux_2_5_x86_64.whl (10.3 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.5+ x86-64

PiML-0.4.1.post0-cp39-none-macosx_10_14_x86_64.whl (9.8 MB view details)

Uploaded CPython 3.9macOS 10.14+ x86-64

PiML-0.4.1.post0-cp38-none-win_amd64.whl (8.4 MB view details)

Uploaded CPython 3.8Windows x86-64

PiML-0.4.1.post0-cp38-none-manylinux_2_17_x86_64.whl (11.9 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

PiML-0.4.1.post0-cp38-none-macosx_10_14_x86_64.whl (10.8 MB view details)

Uploaded CPython 3.8macOS 10.14+ x86-64

PiML-0.4.1.post0-cp37-none-win_amd64.whl (8.1 MB view details)

Uploaded CPython 3.7Windows x86-64

PiML-0.4.1.post0-cp37-none-manylinux_2_17_x86_64.whl (42.6 MB view details)

Uploaded CPython 3.7manylinux: glibc 2.17+ x86-64

PiML-0.4.1.post0-cp37-none-macosx_10_14_x86_64.whl (10.6 MB view details)

Uploaded CPython 3.7macOS 10.14+ x86-64

File details

Details for the file PiML-0.4.1.post0-cp39-none-win_amd64.whl.

File metadata

  • Download URL: PiML-0.4.1.post0-cp39-none-win_amd64.whl
  • Upload date:
  • Size: 10.9 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.8.8

File hashes

Hashes for PiML-0.4.1.post0-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 8ef17575ae59720914c2dc536050cc58eda3f88919823bcebdf9178deab3ecec
MD5 84307eae33933ce046a59262255cd059
BLAKE2b-256 0e4a7d1e9ee349c46ddeac7a36998a2e6de478dd1088de54b74c630a5ed0fcd2

See more details on using hashes here.

File details

Details for the file PiML-0.4.1.post0-cp39-none-manylinux_2_5_x86_64.whl.

File metadata

File hashes

Hashes for PiML-0.4.1.post0-cp39-none-manylinux_2_5_x86_64.whl
Algorithm Hash digest
SHA256 61bb7cc9f6870e85c38f8976b2ff2e91603a2d6aed2102fbf052d8cb7f7f195c
MD5 e2b154082d2e2d143f8f6ac51d85db15
BLAKE2b-256 02d98b12a36407137c0c83fc4857d0765cb44e0f8632aff225f7c1c7d2efe94a

See more details on using hashes here.

File details

Details for the file PiML-0.4.1.post0-cp39-none-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for PiML-0.4.1.post0-cp39-none-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 fa162779daa45df5d950a3de32e9f5e5b88241074dfd76b5057a77bff62d0334
MD5 2e857327783cd5cd8de429b8ba7272ad
BLAKE2b-256 9922e56bb1cedcee9da8b764782a072070daa0090112135df7ff9b9dbc09ea2a

See more details on using hashes here.

File details

Details for the file PiML-0.4.1.post0-cp38-none-win_amd64.whl.

File metadata

  • Download URL: PiML-0.4.1.post0-cp38-none-win_amd64.whl
  • Upload date:
  • Size: 8.4 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.8.8

File hashes

Hashes for PiML-0.4.1.post0-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 e8429447fe3dc96ed012e487f91f989779b77b6fafa7768db653856ab28273ca
MD5 acccb2c6b9bb2dda0d7284a9597c5da8
BLAKE2b-256 582a12780eaf5bb957307969b3daf23496d919a4267ef45ea829e1d4abaa2b77

See more details on using hashes here.

File details

Details for the file PiML-0.4.1.post0-cp38-none-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for PiML-0.4.1.post0-cp38-none-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 59ff609532d6269e0b51db7c0889c0d0f5a0c41eb2e409144be703ca07d5d53d
MD5 b8847405917618063a4d4e620e9611f5
BLAKE2b-256 d17275136a2a93f68245448c391ca94b8d6e2e03d684b006d30cfa369e41627f

See more details on using hashes here.

File details

Details for the file PiML-0.4.1.post0-cp38-none-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for PiML-0.4.1.post0-cp38-none-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 c3c03ae06a2f86e9f41af27cc26746f3d2da89848d7ea17ceb9b89a49c98f24f
MD5 cad7669d2321aec25f60012bb1cb31cb
BLAKE2b-256 0a83182acb4143f324791e210818b0f79cd1d1a1993e5c60b927d5a2a346b73a

See more details on using hashes here.

File details

Details for the file PiML-0.4.1.post0-cp37-none-win_amd64.whl.

File metadata

  • Download URL: PiML-0.4.1.post0-cp37-none-win_amd64.whl
  • Upload date:
  • Size: 8.1 MB
  • Tags: CPython 3.7, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.8.8

File hashes

Hashes for PiML-0.4.1.post0-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 4adf9956086994c4f6a5e590f93a4da17cb44037099a1bdd208c54d994d05a05
MD5 077ab2b9a60377d7e4faf0efc0d9f9f6
BLAKE2b-256 b835a99ddd0f5c6e2db5988c676b1ad84d5bef72aebb3aadbe0af7e85a2e4c07

See more details on using hashes here.

File details

Details for the file PiML-0.4.1.post0-cp37-none-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for PiML-0.4.1.post0-cp37-none-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 b7ed251f30cfe37116e43a236132346edbae5e1aaa717252adc0a44b3ca3e5cb
MD5 981dcd67edb220b3e8c6a60bf54b8769
BLAKE2b-256 f68bc094baa36c8ede30e0512c3da372189d2f5c471a98f9e2fa537f9e670703

See more details on using hashes here.

File details

Details for the file PiML-0.4.1.post0-cp37-none-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for PiML-0.4.1.post0-cp37-none-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 058420517b47f265ede435d4848b03a461cf28dd5068e161f473feffcdec0ab2
MD5 c68a7202c19b44d2d4a01add6870e08a
BLAKE2b-256 69352eaa085adbe5299a0f52b1b0ee83f96c0c1c6929b555e07450cf66f7ffdc

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page