Skip to main content

PyWavelets, wavelet transform module

Project description

Service

Master branch

GitHub

Build Status

Appveyor

Appveyor Status

Read the Docs

Documentation Status

PyWavelets

What is PyWavelets

PyWavelets is a free Open Source library for wavelet transforms in Python. Wavelets are mathematical basis functions that are localized in both time and frequency. Wavelet transforms are time-frequency transforms employing wavelets. They are similar to Fourier transforms, the difference being that Fourier transforms are localized only in frequency instead of in time and frequency.

The main features of PyWavelets are:

  • 1D, 2D and nD Forward and Inverse Discrete Wavelet Transform (DWT and IDWT)

  • 1D, 2D and nD Multilevel DWT and IDWT

  • 1D and 2D Stationary Wavelet Transform (Undecimated Wavelet Transform)

  • 1D and 2D Wavelet Packet decomposition and reconstruction

  • 1D Continuous Wavelet Transform

  • Computing Approximations of wavelet and scaling functions

  • Over 100 built-in wavelet filters and support for custom wavelets

  • Single and double precision calculations

  • Real and complex calculations

  • Results compatible with Matlab Wavelet Toolbox (TM)

Documentation

Documentation with detailed examples and links to more resources is available online at http://pywavelets.readthedocs.org.

For more usage examples see the demo directory in the source package.

Installation

PyWavelets supports Python >=3.10, and is only dependent on NumPy (supported versions are currently >= 1.23.0). To pass all of the tests, Matplotlib is also required. SciPy is also an optional dependency. When present, FFT-based continuous wavelet transforms will use FFTs from SciPy rather than NumPy.

There are binary wheels for Intel Linux, Windows and macOS / OSX on PyPi. If you are on one of these platforms, you should get a binary (precompiled) installation with:

pip install PyWavelets

Users of the Anaconda Python distribution may wish to obtain pre-built Windows, Intel Linux or macOS / OSX binaries from the conda-forge channel. This can be done via:

conda install -c conda-forge pywavelets

Several Linux distributions have their own packages for PyWavelets, but these tend to be moderately out of date. Query your Linux package manager tool for python-pywavelets, python-wavelets, python-pywt or a similar package name.

If you want or need to install from source, you will need a working C compiler (any common one will work) and a recent version of Cython. Navigate to the PyWavelets source code directory (containing pyproject.toml) and type:

pip install .

The most recent development version can be found on GitHub at https://github.com/PyWavelets/pywt.

The latest release, including source and binary packages for Intel Linux, macOS and Windows, is available for download from the Python Package Index. You can find source releases at the Releases Page.

State of development & Contributing

PyWavelets started in 2006 as an academic project for a master thesis on Analysis and Classification of Medical Signals using Wavelet Transforms and was maintained until 2012 by its original developer. In 2013 maintenance was taken over in a new repo) by a larger development team - a move supported by the original developer. The repo move doesn’t mean that this is a fork - the package continues to be developed under the name “PyWavelets”, and released on PyPi and Github (see this issue for the discussion where that was decided).

All contributions including bug reports, bug fixes, new feature implementations and documentation improvements are welcome. Moreover, developers with an interest in PyWavelets are very welcome to join the development team!

As of 2019, PyWavelets development is supported in part by Tidelift. Help support PyWavelets with the Tidelift Subscription

Contact

Use GitHub Issues or the mailing list to post your comments or questions.

Report a security vulnerability: https://tidelift.com/security

License

PyWavelets is a free Open Source software released under the MIT license.

If you wish to cite PyWavelets in a publication, please use the following JOSS publication.

http://joss.theoj.org/papers/10.21105/joss.01237/status.svg

Specific releases can also be cited via Zenodo. The DOI below will correspond to the most recent release. DOIs for past versions can be found by following the link in the badge below to Zenodo:

https://zenodo.org/badge/DOI/10.5281/zenodo.1407171.svg

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pywavelets-1.8.0.tar.gz (3.9 MB view details)

Uploaded Source

Built Distributions

pywavelets-1.8.0-cp313-cp313t-win_amd64.whl (4.3 MB view details)

Uploaded CPython 3.13t Windows x86-64

pywavelets-1.8.0-cp313-cp313t-win32.whl (4.2 MB view details)

Uploaded CPython 3.13t Windows x86

pywavelets-1.8.0-cp313-cp313t-musllinux_1_2_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.13t musllinux: musl 1.2+ x86-64

pywavelets-1.8.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.13t manylinux: glibc 2.17+ x86-64

pywavelets-1.8.0-cp313-cp313t-macosx_11_0_arm64.whl (4.3 MB view details)

Uploaded CPython 3.13t macOS 11.0+ ARM64

pywavelets-1.8.0-cp313-cp313-win_amd64.whl (4.2 MB view details)

Uploaded CPython 3.13 Windows x86-64

pywavelets-1.8.0-cp313-cp313-win32.whl (4.1 MB view details)

Uploaded CPython 3.13 Windows x86

pywavelets-1.8.0-cp313-cp313-musllinux_1_2_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ x86-64

pywavelets-1.8.0-cp313-cp313-musllinux_1_2_aarch64.whl (4.4 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ ARM64

pywavelets-1.8.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

pywavelets-1.8.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.4 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ ARM64

pywavelets-1.8.0-cp313-cp313-macosx_11_0_arm64.whl (4.3 MB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

pywavelets-1.8.0-cp313-cp313-macosx_10_13_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.13 macOS 10.13+ x86-64

pywavelets-1.8.0-cp312-cp312-win_amd64.whl (4.2 MB view details)

Uploaded CPython 3.12 Windows x86-64

pywavelets-1.8.0-cp312-cp312-win32.whl (4.1 MB view details)

Uploaded CPython 3.12 Windows x86

pywavelets-1.8.0-cp312-cp312-musllinux_1_2_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

pywavelets-1.8.0-cp312-cp312-musllinux_1_2_aarch64.whl (4.4 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARM64

pywavelets-1.8.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pywavelets-1.8.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

pywavelets-1.8.0-cp312-cp312-macosx_11_0_arm64.whl (4.3 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

pywavelets-1.8.0-cp312-cp312-macosx_10_13_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.12 macOS 10.13+ x86-64

pywavelets-1.8.0-cp311-cp311-win_amd64.whl (4.2 MB view details)

Uploaded CPython 3.11 Windows x86-64

pywavelets-1.8.0-cp311-cp311-win32.whl (4.1 MB view details)

Uploaded CPython 3.11 Windows x86

pywavelets-1.8.0-cp311-cp311-musllinux_1_2_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

pywavelets-1.8.0-cp311-cp311-musllinux_1_2_aarch64.whl (4.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARM64

pywavelets-1.8.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pywavelets-1.8.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pywavelets-1.8.0-cp311-cp311-macosx_11_0_arm64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pywavelets-1.8.0-cp311-cp311-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pywavelets-1.8.0-cp310-cp310-win_amd64.whl (4.2 MB view details)

Uploaded CPython 3.10 Windows x86-64

pywavelets-1.8.0-cp310-cp310-win32.whl (4.1 MB view details)

Uploaded CPython 3.10 Windows x86

pywavelets-1.8.0-cp310-cp310-musllinux_1_2_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

pywavelets-1.8.0-cp310-cp310-musllinux_1_2_aarch64.whl (4.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ARM64

pywavelets-1.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pywavelets-1.8.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pywavelets-1.8.0-cp310-cp310-macosx_11_0_arm64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pywavelets-1.8.0-cp310-cp310-macosx_10_9_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

File details

Details for the file pywavelets-1.8.0.tar.gz.

File metadata

  • Download URL: pywavelets-1.8.0.tar.gz
  • Upload date:
  • Size: 3.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.10.15

File hashes

Hashes for pywavelets-1.8.0.tar.gz
Algorithm Hash digest
SHA256 f3800245754840adc143cbc29534a1b8fc4b8cff6e9d403326bd52b7bb5c35aa
MD5 41d8521600edebc0f934218f9d63df3c
BLAKE2b-256 4845bfaaab38545a33a9f06c61211fc3bea2e23e8a8e00fedeb8e57feda722ff

See more details on using hashes here.

File details

Details for the file pywavelets-1.8.0-cp313-cp313t-win_amd64.whl.

File metadata

File hashes

Hashes for pywavelets-1.8.0-cp313-cp313t-win_amd64.whl
Algorithm Hash digest
SHA256 ec5d723c3335ff8aa630fd4b14097077f12cc02893c91cafd60dd7b1730e780f
MD5 c17fca91c815a7be12fff3c0f2be3579
BLAKE2b-256 6c587179fd6f87153f2e339171e8cfe9bf901398a89045eefd7a3911bb9b47ad

See more details on using hashes here.

File details

Details for the file pywavelets-1.8.0-cp313-cp313t-win32.whl.

File metadata

  • Download URL: pywavelets-1.8.0-cp313-cp313t-win32.whl
  • Upload date:
  • Size: 4.2 MB
  • Tags: CPython 3.13t, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.10.15

File hashes

Hashes for pywavelets-1.8.0-cp313-cp313t-win32.whl
Algorithm Hash digest
SHA256 f2877fb7b58c94211257dcf364b204d6ed259146fc87d5a90bf9d93c97af6226
MD5 680b0df24f1a2cc349edac631a2c4bbb
BLAKE2b-256 206a257c95ad1e0fd395cbccd4ffec0d01cc9b51a3bb91e67d8fa10ffebc9c72

See more details on using hashes here.

File details

Details for the file pywavelets-1.8.0-cp313-cp313t-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pywavelets-1.8.0-cp313-cp313t-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 06786201a91b5e74540f4f3c115c49a29190de2eb424823abbd3a1fd75ea3e28
MD5 8fa2b1a7a20f1b2b84c0a44136e54f70
BLAKE2b-256 d562f05dd191232ae94e0b48509bb0ee65c9d45abf5e8f3612b09fd309b41384

See more details on using hashes here.

File details

Details for the file pywavelets-1.8.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pywavelets-1.8.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7f489380c95013cc8fb3ef338f6d8c1a907125db453cc4dc739e2cca06fcd8b6
MD5 345bae4cee8f5068d20752c8a0ad2cde
BLAKE2b-256 58d13abe4cf34a35b09ad847f0e9a85f340c1988611222926d295fa8710659e7

See more details on using hashes here.

File details

Details for the file pywavelets-1.8.0-cp313-cp313t-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pywavelets-1.8.0-cp313-cp313t-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2e1c79784bebeafd3715c1bea6621daa2e2e6ed37b687719322e2078fb35bb70
MD5 db649399d0dfca7169a805d4faeba950
BLAKE2b-256 de2a4cac0bba67d3bc0ad697d0680539864db0a6964c7ad953d8d9d887f360b3

See more details on using hashes here.

File details

Details for the file pywavelets-1.8.0-cp313-cp313-win_amd64.whl.

File metadata

File hashes

Hashes for pywavelets-1.8.0-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 4dbebcfd55ea8a85b7fc8802d411e75337170422abf6e96019d7e46c394e80e5
MD5 59725c511f02380c2c71416df4e3e334
BLAKE2b-256 c94f0a709a5732e6cf9297fc87bf545cb879997cde204115f8c0cbc296c5bdd3

See more details on using hashes here.

File details

Details for the file pywavelets-1.8.0-cp313-cp313-win32.whl.

File metadata

  • Download URL: pywavelets-1.8.0-cp313-cp313-win32.whl
  • Upload date:
  • Size: 4.1 MB
  • Tags: CPython 3.13, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.10.15

File hashes

Hashes for pywavelets-1.8.0-cp313-cp313-win32.whl
Algorithm Hash digest
SHA256 2c6b359b55d713ef683e9da1529181b865a80d759881ceb9adc1c5742e4da4d8
MD5 396950babb2a958e630fdf2b3e93e156
BLAKE2b-256 854d1c4f870010368f3aeb0bdd72929376a1988e4a122e76545bd8c56e549c96

See more details on using hashes here.

File details

Details for the file pywavelets-1.8.0-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pywavelets-1.8.0-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 fa7c68ed1e5bab23b1bafe60ccbcf709b878652d03de59e961baefa5210fcd0a
MD5 b89a2d426d41df8de40876a2b84e54ec
BLAKE2b-256 e5d2e78a976b0600a6ef7a70f4430122d6ad11b3e1cbda3c8b3565661d094678

See more details on using hashes here.

File details

Details for the file pywavelets-1.8.0-cp313-cp313-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for pywavelets-1.8.0-cp313-cp313-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 d31c36a39110e8fcc7b1a4a11cfed7d22b610c285d3e7f4fe73ec777aa49fa39
MD5 30200b77c61e9769ddfe809699def7ff
BLAKE2b-256 c3239ce38829f57159e812c469c4f9d7b5a16c1ba922c1802985e8c504468206

See more details on using hashes here.

File details

Details for the file pywavelets-1.8.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pywavelets-1.8.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 aa0607a9c085b8285bc0d04e33d461a6c80f8c325389221ffb1a45141861138e
MD5 58e2712d3d25480348e748d51a8582d6
BLAKE2b-256 bf1abfca9eab23bd7b27843b0ce95c47796033a7b2c93048315f5fc5d6ac6428

See more details on using hashes here.

File details

Details for the file pywavelets-1.8.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pywavelets-1.8.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 426ff3799446cb4da1db04c2084e6e58edfe24225596805665fd39c14f53dece
MD5 96c662cc705cc863925a6011146d7f34
BLAKE2b-256 da5587b4ad6128b2e85985908e958e856e0b680cdcc03cc490e2cc995164b13a

See more details on using hashes here.

File details

Details for the file pywavelets-1.8.0-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pywavelets-1.8.0-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 24bb282bab09349d9d128ed0536fa50fff5c2147891971a69c2c36155dfeeeac
MD5 827cd32465bed53be7c2391db700653c
BLAKE2b-256 b070c58937ebbca1aba3475ca5ee63c7bcebf09f3c93891ae5942eaec7e95707

See more details on using hashes here.

File details

Details for the file pywavelets-1.8.0-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pywavelets-1.8.0-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 441ba45c8dff8c6916dbe706958d0d7f91da675695ca0c0d75e483f6f52d0a12
MD5 9cdaf89d9394c5de68bf25bbdd6af373
BLAKE2b-256 94737ff347d77c6bda11330565050c3346c54bc210086380abeb84e402c1c9cd

See more details on using hashes here.

File details

Details for the file pywavelets-1.8.0-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for pywavelets-1.8.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 810a23a631da596fef7196ddec49b345b1aab13525bb58547eeebe1769edbbc1
MD5 9d5b0c61c07e80f9cdb8ae41f517186f
BLAKE2b-256 1c889e2aa9d5fde08bfc0fb18ffb1b5307c1ed49c24930b4147e5f48571a7251

See more details on using hashes here.

File details

Details for the file pywavelets-1.8.0-cp312-cp312-win32.whl.

File metadata

  • Download URL: pywavelets-1.8.0-cp312-cp312-win32.whl
  • Upload date:
  • Size: 4.1 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.10.15

File hashes

Hashes for pywavelets-1.8.0-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 4b3c2ab669c91e3474fd63294355487b7dd23f0b51d32f811327ddf3546f4f3d
MD5 737ea0cd59ebe2f63b644fbdc9f4a196
BLAKE2b-256 c99b69de31c3b663dadd76d1da6bf8af68d8cefff55df8e880fe96a94bb8c9ac

See more details on using hashes here.

File details

Details for the file pywavelets-1.8.0-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pywavelets-1.8.0-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 63f67fa2ee1610445de64f746fb9c1df31980ad13d896ea2331fc3755f49b3ae
MD5 9dbc98b65eaf1883ddc6cbc32875d2e4
BLAKE2b-256 ce8c1688b790e55674667ad644262f174405c2c9873cb13e773432e78b1b33e4

See more details on using hashes here.

File details

Details for the file pywavelets-1.8.0-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for pywavelets-1.8.0-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 8c68e9d072c536bc646e8bdce443bb1826eeb9aa21b2cb2479a43954dea692a3
MD5 f2b2aa44a1f4279fef3e51d95f4ccfb1
BLAKE2b-256 b9d6b54ef30daca71824f811f9d2322a978b0a58d27674b8e3af6520f67e9ec6

See more details on using hashes here.

File details

Details for the file pywavelets-1.8.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pywavelets-1.8.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 649936baee933e80083788e0adc4d8bc2da7cdd8b10464d3b113475be2cc5308
MD5 992401da44282483f6f90812788b53b9
BLAKE2b-256 6fc51ce93657432e22a5debc21e8b52ec6980f819ecb7fa727bb86744224d967

See more details on using hashes here.

File details

Details for the file pywavelets-1.8.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pywavelets-1.8.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 cae701117f5c7244b7c8d48b9e92a0289637cdc02a9c205e8be83361f0c11fae
MD5 2b404cc87bd4ce2cd7bc2cab9a77cea1
BLAKE2b-256 631c42e5130226538c70d4bbbaee00eb1bc06ec3287f7ea43d5fcf85bfc761ce

See more details on using hashes here.

File details

Details for the file pywavelets-1.8.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pywavelets-1.8.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e39b0e2314e928cb850ee89b9042733a10ea044176a495a54dc84d2c98407a51
MD5 3605b9ec13624112401a8fec4c807f27
BLAKE2b-256 c43566835d889fd7fbf3119c7a9bd9d9bd567fc0bb603dfba408e9226db7cb44

See more details on using hashes here.

File details

Details for the file pywavelets-1.8.0-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pywavelets-1.8.0-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 3f431c9e2aff1a2240765eff5e804975d0fcc24c82d6f3d4271243f228e5963b
MD5 e8b2dc6a4e6c29b2c24a03c6e183c738
BLAKE2b-256 2d8b4870f11559307416470158a5aa6f61e5c2a910f1645a7a836ffae580b7ad

See more details on using hashes here.

File details

Details for the file pywavelets-1.8.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pywavelets-1.8.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 3814d354dd109e244ffaac3d480d29a5202212fe24570c920268237c8d276f95
MD5 98e637bfef68448a684839b5389db2a2
BLAKE2b-256 7b0bf4b92d4f00565280ea3e62a8e3dc81a667d67ed7bd59232f2f18d55f9aff

See more details on using hashes here.

File details

Details for the file pywavelets-1.8.0-cp311-cp311-win32.whl.

File metadata

  • Download URL: pywavelets-1.8.0-cp311-cp311-win32.whl
  • Upload date:
  • Size: 4.1 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.10.15

File hashes

Hashes for pywavelets-1.8.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 bf327528d10de471b04bb725c4e10677fac5a49e13d41bf0d0b3a1f6d7097abf
MD5 582af29feda5a0ce5da7c19c4b7ee5be
BLAKE2b-256 a1d0f755cee11ff20668114942d0e777e2b502a8e4665e1fdb2553b587aac637

See more details on using hashes here.

File details

Details for the file pywavelets-1.8.0-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pywavelets-1.8.0-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 e62c8fb52ab0e8ff212fff9acae681a8f12d68b76c36fe24cc48809d5b6825ba
MD5 198313a0c70e0e0709a12eb77ce797e9
BLAKE2b-256 055458b87f8b636a9f044f3f9814d2ec696cf25f3b33af97c11811f13c364085

See more details on using hashes here.

File details

Details for the file pywavelets-1.8.0-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for pywavelets-1.8.0-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 a0e1db96dcf3ce08156859df8b359e9ff66fa15061a1b90e70e020bf4cd077a0
MD5 3f38caa603e9d4e3403a61ee90f1a75a
BLAKE2b-256 03ee90c3d0a0a3bda74e6e097e4c06bff9446ff2a4c90b8617aaf4902c46966b

See more details on using hashes here.

File details

Details for the file pywavelets-1.8.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pywavelets-1.8.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1c1aad0b97714e3079a2bfe48e4fb8ccd60778d0427e9ee5e0a9ff922e6c61e4
MD5 a7056e0939eb5b1a3edb7142f12700de
BLAKE2b-256 5810e59c162a11d2fedb4454abbf7b74a52390aba5edc9605bf829bfa8708dac

See more details on using hashes here.

File details

Details for the file pywavelets-1.8.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pywavelets-1.8.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4b43a4c58707b1e8d941bec7f1d83e67c482278575ff0db3189d5c0dfae23a57
MD5 1cb1507c5a44c5f16a47664cea5248af
BLAKE2b-256 2cdcba1f212e9b43117ed28e0fd092e72e817790427400f88937ea742d260153

See more details on using hashes here.

File details

Details for the file pywavelets-1.8.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pywavelets-1.8.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8d8abaf7c120b151ef309c9ff57e0a44ba9febf49045056dbc1577526ecec6c8
MD5 7e1115c74fc7e62fa56987138c9befe0
BLAKE2b-256 3eb8f6246be5c78e9fa73fcbba9ab4cbfe0d4dcb79ea5491f28d673a53466134

See more details on using hashes here.

File details

Details for the file pywavelets-1.8.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pywavelets-1.8.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e8dd5be4faed994581a8a4b3c0169be20567a9346e523f0b57f903c8f6722bce
MD5 31c07b2fa7ee9fc34681dba5e11dc7f5
BLAKE2b-256 6c8a9f8e794120b55caa1c4ae8d72696111bc408251615f351a8e54a5d8c4d4e

See more details on using hashes here.

File details

Details for the file pywavelets-1.8.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pywavelets-1.8.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 560c39f1ff8cb37f8b8ea4b7b6eb8a14f6926c11f5cf8c09f013a58f895ed5bc
MD5 ece5373a94d73eda370f789de5382ee8
BLAKE2b-256 01e206e08230c26049740b2773952fbb12cc7186e5df655a73b1c30ba493e864

See more details on using hashes here.

File details

Details for the file pywavelets-1.8.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: pywavelets-1.8.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 4.1 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.10.15

File hashes

Hashes for pywavelets-1.8.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 31baf4be6940fde72cc85663154360857ac1b93c251822deaf72bb804da95031
MD5 99b609be5ebdffd84b32cc8a020a1b20
BLAKE2b-256 8c7e52df87a9e77adfb12c1b8be79a2053f2eb4c2507dec96ebfd2333b15ff03

See more details on using hashes here.

File details

Details for the file pywavelets-1.8.0-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pywavelets-1.8.0-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 e10c3fc7f4a796e94da4bca9871be2186a7bb7a3b3536a0ca9376d84263140f0
MD5 f44b59466693d3e151e0b61f2d5a376f
BLAKE2b-256 3ba742ea5bbb6055abd312e45b27d931200fd6eed5414a87ec5d62020a4c651b

See more details on using hashes here.

File details

Details for the file pywavelets-1.8.0-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for pywavelets-1.8.0-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 8bfa833d08b60d0bf53a7939fbbf3d98015dd34efe89cbe4e53ced880d085fc1
MD5 35dcbe8aaafc1d98f2e891ba4e8b64b4
BLAKE2b-256 f9e604d76d93c158919ef0d8e1d40d1d453168305031eca6733fdc844f7cbb07

See more details on using hashes here.

File details

Details for the file pywavelets-1.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pywavelets-1.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 880a0197e9fa108939af50a95e97c1bf9b7d3e148e0fad92ea60a9ed8c8947c0
MD5 4010cc886267648e11bbfcbf9f058960
BLAKE2b-256 537a7f5889a57177e2b1182080fc2c52236d1e03a0fad5e0b3d7c5312070c0be

See more details on using hashes here.

File details

Details for the file pywavelets-1.8.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pywavelets-1.8.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 dec23dfe6d5a3f4312b12456b8c546aa90a11c1138e425a885987505f0658ae0
MD5 10d30fdd89081a54d5bec23eec1b6ebb
BLAKE2b-256 2f17a868aa26e45c104613d9069f9d8ec0123687cb6945062d274f20a3992436

See more details on using hashes here.

File details

Details for the file pywavelets-1.8.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pywavelets-1.8.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fafb5fa126277e1690c3d6329287122fc08e4d25a262ce126e3d81b1f5709308
MD5 da55094d5836af77c71b1fa15b2fad8a
BLAKE2b-256 d0d72fc8067c3520ce25f7632b0f47b89d1b75653cab804a42700e95126f2679

See more details on using hashes here.

File details

Details for the file pywavelets-1.8.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pywavelets-1.8.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f5c86fcb203c8e61d1f3d4afbfc08d626c64e4e3708207315577264c724632bf
MD5 cc3475053168d9a7c28d9cc5c12b5b51
BLAKE2b-256 657ec5e398f25c70558ca195dd4144ee004666401f6167084c1e76059d7e68d8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page