Skip to main content

PyWavelets, wavelet transform module

Project description

Service

Master branch

GitHub

Build Status

Appveyor

Appveyor Status

Read the Docs

Documentation Status

PyWavelets

What is PyWavelets

PyWavelets is a free Open Source library for wavelet transforms in Python. Wavelets are mathematical basis functions that are localized in both time and frequency. Wavelet transforms are time-frequency transforms employing wavelets. They are similar to Fourier transforms, the difference being that Fourier transforms are localized only in frequency instead of in time and frequency.

The main features of PyWavelets are:

  • 1D, 2D and nD Forward and Inverse Discrete Wavelet Transform (DWT and IDWT)

  • 1D, 2D and nD Multilevel DWT and IDWT

  • 1D and 2D Stationary Wavelet Transform (Undecimated Wavelet Transform)

  • 1D and 2D Wavelet Packet decomposition and reconstruction

  • 1D Continuous Wavelet Transform

  • Computing Approximations of wavelet and scaling functions

  • Over 100 built-in wavelet filters and support for custom wavelets

  • Single and double precision calculations

  • Real and complex calculations

  • Results compatible with Matlab Wavelet Toolbox (TM)

Documentation

Documentation with detailed examples and links to more resources is available online at http://pywavelets.readthedocs.org.

For more usage examples see the demo directory in the source package.

Installation

PyWavelets supports Python >=3.9, and is only dependent on NumPy (supported versions are currently >= 1.14.6). To pass all of the tests, Matplotlib is also required. SciPy is also an optional dependency. When present, FFT-based continuous wavelet transforms will use FFTs from SciPy rather than NumPy.

There are binary wheels for Intel Linux, Windows and macOS / OSX on PyPi. If you are on one of these platforms, you should get a binary (precompiled) installation with:

pip install PyWavelets

Users of the Anaconda Python distribution may wish to obtain pre-built Windows, Intel Linux or macOS / OSX binaries from the conda-forge channel. This can be done via:

conda install -c conda-forge pywavelets

Several Linux distributions have their own packages for PyWavelets, but these tend to be moderately out of date. Query your Linux package manager tool for python-pywavelets, python-wavelets, python-pywt or a similar package name.

If you want or need to install from source, you will need a working C compiler (any common one will work) and a recent version of Cython. Navigate to the PyWavelets source code directory (containing pyproject.toml) and type:

pip install .

The most recent development version can be found on GitHub at https://github.com/PyWavelets/pywt.

The latest release, including source and binary packages for Intel Linux, macOS and Windows, is available for download from the Python Package Index. You can find source releases at the Releases Page.

State of development & Contributing

PyWavelets started in 2006 as an academic project for a master thesis on Analysis and Classification of Medical Signals using Wavelet Transforms and was maintained until 2012 by its original developer. In 2013 maintenance was taken over in a new repo) by a larger development team - a move supported by the original developer. The repo move doesn’t mean that this is a fork - the package continues to be developed under the name “PyWavelets”, and released on PyPi and Github (see this issue for the discussion where that was decided).

All contributions including bug reports, bug fixes, new feature implementations and documentation improvements are welcome. Moreover, developers with an interest in PyWavelets are very welcome to join the development team!

As of 2019, PyWavelets development is supported in part by Tidelift. Help support PyWavelets with the Tidelift Subscription

Contact

Use GitHub Issues or the mailing list to post your comments or questions.

Report a security vulnerability: https://tidelift.com/security

License

PyWavelets is a free Open Source software released under the MIT license.

If you wish to cite PyWavelets in a publication, please use the following JOSS publication.

http://joss.theoj.org/papers/10.21105/joss.01237/status.svg

Specific releases can also be cited via Zenodo. The DOI below will correspond to the most recent release. DOIs for past versions can be found by following the link in the badge below to Zenodo:

https://zenodo.org/badge/DOI/10.5281/zenodo.1407171.svg

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pywavelets-1.6.0rc1.tar.gz (3.9 MB view details)

Uploaded Source

Built Distributions

pywavelets-1.6.0rc1-cp312-cp312-win_amd64.whl (4.2 MB view details)

Uploaded CPython 3.12Windows x86-64

pywavelets-1.6.0rc1-cp312-cp312-win32.whl (4.2 MB view details)

Uploaded CPython 3.12Windows x86

pywavelets-1.6.0rc1-cp312-cp312-musllinux_1_1_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.12musllinux: musl 1.1+ x86-64

pywavelets-1.6.0rc1-cp312-cp312-musllinux_1_1_aarch64.whl (4.4 MB view details)

Uploaded CPython 3.12musllinux: musl 1.1+ ARM64

pywavelets-1.6.0rc1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

pywavelets-1.6.0rc1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.4 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ ARM64

pywavelets-1.6.0rc1-cp312-cp312-macosx_11_0_arm64.whl (4.3 MB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

pywavelets-1.6.0rc1-cp312-cp312-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.12macOS 10.9+ x86-64

pywavelets-1.6.0rc1-cp311-cp311-win_amd64.whl (4.3 MB view details)

Uploaded CPython 3.11Windows x86-64

pywavelets-1.6.0rc1-cp311-cp311-win32.whl (4.2 MB view details)

Uploaded CPython 3.11Windows x86

pywavelets-1.6.0rc1-cp311-cp311-musllinux_1_1_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.11musllinux: musl 1.1+ x86-64

pywavelets-1.6.0rc1-cp311-cp311-musllinux_1_1_aarch64.whl (4.5 MB view details)

Uploaded CPython 3.11musllinux: musl 1.1+ ARM64

pywavelets-1.6.0rc1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

pywavelets-1.6.0rc1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.5 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARM64

pywavelets-1.6.0rc1-cp311-cp311-macosx_11_0_arm64.whl (4.3 MB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

pywavelets-1.6.0rc1-cp311-cp311-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

pywavelets-1.6.0rc1-cp310-cp310-win_amd64.whl (4.3 MB view details)

Uploaded CPython 3.10Windows x86-64

pywavelets-1.6.0rc1-cp310-cp310-win32.whl (4.2 MB view details)

Uploaded CPython 3.10Windows x86

pywavelets-1.6.0rc1-cp310-cp310-musllinux_1_1_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.10musllinux: musl 1.1+ x86-64

pywavelets-1.6.0rc1-cp310-cp310-musllinux_1_1_aarch64.whl (4.5 MB view details)

Uploaded CPython 3.10musllinux: musl 1.1+ ARM64

pywavelets-1.6.0rc1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

pywavelets-1.6.0rc1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.5 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64

pywavelets-1.6.0rc1-cp310-cp310-macosx_11_0_arm64.whl (4.3 MB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

pywavelets-1.6.0rc1-cp310-cp310-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

pywavelets-1.6.0rc1-cp39-cp39-win_amd64.whl (4.3 MB view details)

Uploaded CPython 3.9Windows x86-64

pywavelets-1.6.0rc1-cp39-cp39-win32.whl (4.2 MB view details)

Uploaded CPython 3.9Windows x86

pywavelets-1.6.0rc1-cp39-cp39-musllinux_1_1_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.9musllinux: musl 1.1+ x86-64

pywavelets-1.6.0rc1-cp39-cp39-musllinux_1_1_aarch64.whl (4.5 MB view details)

Uploaded CPython 3.9musllinux: musl 1.1+ ARM64

pywavelets-1.6.0rc1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

pywavelets-1.6.0rc1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.5 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64

pywavelets-1.6.0rc1-cp39-cp39-macosx_11_0_arm64.whl (4.3 MB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

pywavelets-1.6.0rc1-cp39-cp39-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

File details

Details for the file pywavelets-1.6.0rc1.tar.gz.

File metadata

  • Download URL: pywavelets-1.6.0rc1.tar.gz
  • Upload date:
  • Size: 3.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.18

File hashes

Hashes for pywavelets-1.6.0rc1.tar.gz
Algorithm Hash digest
SHA256 218223b63f571ece43bb7d3011a5b68039fee8e6a77562607b181f2671f04d30
MD5 d71d2bfc685dbdfc8475a3640f3fb211
BLAKE2b-256 7bcfd4401b02e6b175bb6f654f0700d1aa4cdeada1843ec64ef2c939456e2d5a

See more details on using hashes here.

File details

Details for the file pywavelets-1.6.0rc1-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for pywavelets-1.6.0rc1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 8521ea9bd925197996c9771f4dacdc64ff914cc1c1a4c2249ed904618d2d1ae1
MD5 d020a908b390a42483305c0bab58242c
BLAKE2b-256 cd674f0ea72ecb82b427bb67162d7975e5972e25e52d324caf033eb5800cb971

See more details on using hashes here.

File details

Details for the file pywavelets-1.6.0rc1-cp312-cp312-win32.whl.

File metadata

  • Download URL: pywavelets-1.6.0rc1-cp312-cp312-win32.whl
  • Upload date:
  • Size: 4.2 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.18

File hashes

Hashes for pywavelets-1.6.0rc1-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 7a53a95ff8e037c3480147687c210adf0ca46f9d0bb4bfb33f4a1dd300d08ce4
MD5 a44134b6943acb76a04b5c2621488252
BLAKE2b-256 e7e5536d1e6eca91ceaa1c9a164cbadc3d055efadd48556313396b79c2df695e

See more details on using hashes here.

File details

Details for the file pywavelets-1.6.0rc1-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pywavelets-1.6.0rc1-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 7b09952e39b2917b9021db9843719ceecef4911c3ad0b0b4ba8e61cf415014b6
MD5 2c2dc7551d799fb93d961b49bd453a6b
BLAKE2b-256 41c5dde53b5713513a9f07e2b588c622c1a3b7aceca40bd02d0225b7822735ab

See more details on using hashes here.

File details

Details for the file pywavelets-1.6.0rc1-cp312-cp312-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pywavelets-1.6.0rc1-cp312-cp312-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 2ae4b5072a6802a82270cb75a0e9e95a79b1a629a0115d39783c52d19698e0b1
MD5 dd3dbf459fc70619124581b882a90c07
BLAKE2b-256 6dc8a16debaccc5dc6eec5901d4e325715844152deb5e51a2d1f5adcb4a8eb68

See more details on using hashes here.

File details

Details for the file pywavelets-1.6.0rc1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pywavelets-1.6.0rc1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 eb73f25a703307721cccbc43ec0ded594bf7e8d0e7d7c86f10be3fd90b05e2e8
MD5 cb7529a66b72f9773adec53f16730168
BLAKE2b-256 25df59601dce21cb08b6a8f11c330f82be9ec08de1d14aea4cb253e930870723

See more details on using hashes here.

File details

Details for the file pywavelets-1.6.0rc1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pywavelets-1.6.0rc1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1ab5c5ef5fd726d2cf6cbded4c8b7e694783ee1385f6248ebb79ae3527a25a0b
MD5 1671572f89cdc506b9f2b22ffa389f80
BLAKE2b-256 b19903f2af48e23066011cffdefe1be71012efe58ee49ada80b9ada15b82098e

See more details on using hashes here.

File details

Details for the file pywavelets-1.6.0rc1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pywavelets-1.6.0rc1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 09b81522dba00317032580666da699ed5d1ce141edd0535ea110e1a6f0b6fc91
MD5 3a808e6dff6125090567b4bd4b48973f
BLAKE2b-256 c62297da0056cfeb5591839ccf9fbb8bcc8f470c0a56c41b284df863bb2b382b

See more details on using hashes here.

File details

Details for the file pywavelets-1.6.0rc1-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pywavelets-1.6.0rc1-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f756c575d2b5a9fbded66f50f5e2be780c9fa1d8e20cc720261adfeb4f90c793
MD5 ff8d9845b0538197e0ddddef24aedf3f
BLAKE2b-256 bc0df54344509f8b9b5e4349e34fba3a4a60a18d584f56ef3ceabc2bc1222083

See more details on using hashes here.

File details

Details for the file pywavelets-1.6.0rc1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pywavelets-1.6.0rc1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 a983c9778d4adf01795a123cfdc9fe688374512b034a22163c2cc1f25bc0d8b6
MD5 fcfb0dee67e96642e350c4d3c917628b
BLAKE2b-256 3d6a5ac89141ee7bc6df532275b70a75328de28e98380eff691abf9fec5162c9

See more details on using hashes here.

File details

Details for the file pywavelets-1.6.0rc1-cp311-cp311-win32.whl.

File metadata

  • Download URL: pywavelets-1.6.0rc1-cp311-cp311-win32.whl
  • Upload date:
  • Size: 4.2 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.18

File hashes

Hashes for pywavelets-1.6.0rc1-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 f3822048159d5d907ef3749b2e80450fc4d29023dae6df7afb7ae073139c9dc5
MD5 61bc157b60ca8cfb2062968cec8f0a36
BLAKE2b-256 2039bcf55ec01588143fd599a7dd24f30b2ae3430d9b2ee6ae05c175678b2f9c

See more details on using hashes here.

File details

Details for the file pywavelets-1.6.0rc1-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pywavelets-1.6.0rc1-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 81179af0dcaefb20a04e354058c8e5fa3569bc04cec6ad911c46c65e4757f2ae
MD5 6c1e12038fc77532988b3c76f3ea5412
BLAKE2b-256 ee52e05dc47c82dc5aeb73531a95900f7ed59c471bb8b376d19a9a88776df0a5

See more details on using hashes here.

File details

Details for the file pywavelets-1.6.0rc1-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pywavelets-1.6.0rc1-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 35cfd811ae330766455125f503be9fc58a85152a22d7ec3eb6803c8419491893
MD5 bab73dce786fa03a05ba43343d9c7240
BLAKE2b-256 ac540a89b42eecec1d70e7d282a6ab17fd9ba109f6d26245f2b8aabd095116c7

See more details on using hashes here.

File details

Details for the file pywavelets-1.6.0rc1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pywavelets-1.6.0rc1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ca0ce5ee9e664c334c7e60abbe834bb47c8276d51eb875b6df68d6ffef81c8f6
MD5 a2010569d00b2829704cf3ae90eddc15
BLAKE2b-256 5ca27bb6f52d291b2416c93ad8f0b514627cfe88dbb61d03ca6decfde109a247

See more details on using hashes here.

File details

Details for the file pywavelets-1.6.0rc1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pywavelets-1.6.0rc1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 68f6f6dbaa2407593febed8d4fce06783d84cbaba3f7b0b935f50f24276eb4b3
MD5 d3fb24295093f9876c4b9e3ad384f929
BLAKE2b-256 4f44e2217b4f2e39d9c8df622e431ec54e9007706ffacd5cc7dc2fc860eef32f

See more details on using hashes here.

File details

Details for the file pywavelets-1.6.0rc1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pywavelets-1.6.0rc1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 aaa18a4e79136e5ac450e89f64a01410065ede5745932d2569403695bfee7038
MD5 e74932b4d74a398842b172c53fea9d74
BLAKE2b-256 b387e89c5d8a658b4e23b8be7b36b9df73ae77264658b7436bff26f4742adc1f

See more details on using hashes here.

File details

Details for the file pywavelets-1.6.0rc1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pywavelets-1.6.0rc1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c329ebcaa48b5a578e0b69f5fd414aa1e9a5be85176f68ac12d2ecdea1d3e001
MD5 02bd1d26be1cf09f287fe2924d13874c
BLAKE2b-256 bb5ea7cc3cf0a8f925c3e6529453a0d63efe1a21bb8f685012ffd69cfbc3eeb5

See more details on using hashes here.

File details

Details for the file pywavelets-1.6.0rc1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pywavelets-1.6.0rc1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 e4102d44b958a9fe7382908b58f17aa11a011299a435344c9a92b439eb32fd8c
MD5 19542c7c306a2f74d0c2ad3004615dc1
BLAKE2b-256 aa71b6d0661b6eb335a10a971291cfe55116659448dbee9dd034de461ff9d4bb

See more details on using hashes here.

File details

Details for the file pywavelets-1.6.0rc1-cp310-cp310-win32.whl.

File metadata

  • Download URL: pywavelets-1.6.0rc1-cp310-cp310-win32.whl
  • Upload date:
  • Size: 4.2 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.18

File hashes

Hashes for pywavelets-1.6.0rc1-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 b01a49b9f99dcda86cea3cbf73596ab5d5d92e348b964f851623d424540f47fd
MD5 1bd62df90163fd8c1068d7627857897c
BLAKE2b-256 49c49935be0f31be58d482c4f4e4e2e8bb216ada047e1b0eabb292dc7783a493

See more details on using hashes here.

File details

Details for the file pywavelets-1.6.0rc1-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pywavelets-1.6.0rc1-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 255fe0121c68b5371e9ed92075f8cdfcc7cfbc341257fc684f7991131379128d
MD5 c68abddd33def35f156f96b88b945794
BLAKE2b-256 9589e8bc4ea4a32c899cc3e6a2330aab7d8a5502316e6917f58879dd9932623a

See more details on using hashes here.

File details

Details for the file pywavelets-1.6.0rc1-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pywavelets-1.6.0rc1-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 61cfe265d7c8b09413e7124e48d3c89cb05dab82abd8922b9f0ca3bdb71eeba3
MD5 f0282667952325b23c23846ff0dc044b
BLAKE2b-256 fa9500369f7802adfb5200ab8aacdd576aca52b846c089a67f8ec721639b5c1a

See more details on using hashes here.

File details

Details for the file pywavelets-1.6.0rc1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pywavelets-1.6.0rc1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 47347d28eb9b35986866b466a143a9eb5bf62879b747d1202e49398d8e3b2282
MD5 e3c27578da5c3e7b04a9697105ec5dcd
BLAKE2b-256 56699660769b1d3564c3dca90b60e2f63be6c9df78faba8325525fa49c824bfd

See more details on using hashes here.

File details

Details for the file pywavelets-1.6.0rc1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pywavelets-1.6.0rc1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9bb928e870c862eabc3e8ef4e91350261f1072451e4264e32fdf9856672644b0
MD5 a1f1b9c432aa19fb41ec85c2e89c208e
BLAKE2b-256 a24be5581b21ad6aa1952c81e60f0948d6f5cec74af5ab00c197ef769c3f7d80

See more details on using hashes here.

File details

Details for the file pywavelets-1.6.0rc1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pywavelets-1.6.0rc1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 04d18125279e9318297af38568dfe793337f2cd31de1f49c3b3eea9f644fc727
MD5 391e4b3e7b06ae42dbb1feaca31264a1
BLAKE2b-256 2d2ccdda3746f156659123e9f085d6ad28ebbd4a26e4200165345a266df8bb06

See more details on using hashes here.

File details

Details for the file pywavelets-1.6.0rc1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pywavelets-1.6.0rc1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f35e7f7f6a45dd1df5576a41c453ff88a7cededf0be3e9b12091242dbe10fefc
MD5 c9b02cb9a748c3baea6b2561860888d2
BLAKE2b-256 1e29085b9aeaaf770d4d230b01882264fed0349d0caf93cdf6768eaae58c5a0d

See more details on using hashes here.

File details

Details for the file pywavelets-1.6.0rc1-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pywavelets-1.6.0rc1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 1fd948980a8c10465d348647ec91503dc1871c6a3bacbe870fe9e4485f612260
MD5 5da613ec4199668f49433351ced24349
BLAKE2b-256 73e99d64b96adc5aef4df03ec2f16ae3028db6ccbc7013bbc8f87244667aa006

See more details on using hashes here.

File details

Details for the file pywavelets-1.6.0rc1-cp39-cp39-win32.whl.

File metadata

  • Download URL: pywavelets-1.6.0rc1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 4.2 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.18

File hashes

Hashes for pywavelets-1.6.0rc1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 8873dbf941cc596e4795494f04acc6e308a3c8044c827541102621be9d067fa4
MD5 bd62fd2920a0c9eb8fd22858af238b63
BLAKE2b-256 99ff7e77e244a979acd240f8e6230f0d1e764e7b532735489d3b0a339f8d7b77

See more details on using hashes here.

File details

Details for the file pywavelets-1.6.0rc1-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pywavelets-1.6.0rc1-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 7b3daf701ad84889f277d90b22e3cd38a0a96ac5e3b882d46e0b7e1a7f17a0d6
MD5 1a4ce162d63fb37bb68879b28125ad5d
BLAKE2b-256 6a456f6b169b5093fbf7382d85c8b3276c80268201d11674f35ce38ea279ae69

See more details on using hashes here.

File details

Details for the file pywavelets-1.6.0rc1-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pywavelets-1.6.0rc1-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 da7648b80665ce64755d92a755b4ec515e5a350d7e7e773b224a6eb6492a847d
MD5 7fd7072d126240c762aca30323d2530f
BLAKE2b-256 8ec6e1dbce217ded9b5335e224bb6ae35e036040d5d9a5a93f7c536967908c18

See more details on using hashes here.

File details

Details for the file pywavelets-1.6.0rc1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pywavelets-1.6.0rc1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f99396a9ec17b6a1d87f79a0bb3df7fb2ea1f90b641c1a65a6af16296414a89c
MD5 c78779282b365476d019e5a21b82ad1d
BLAKE2b-256 0842b5df7e57c7255a4298c55a1239ddc3e34be2b342f9d3e1c5a5f069ce5cb9

See more details on using hashes here.

File details

Details for the file pywavelets-1.6.0rc1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pywavelets-1.6.0rc1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c95b81d1ddf91882489f51b58d93acce6a019fa55621ab73e009dd4af7904325
MD5 c3c7c229913b05f4f6015a7365965c05
BLAKE2b-256 3798206052349cc4a532494bd3924527d0d32b1e93f8374f4691ecc14823fda2

See more details on using hashes here.

File details

Details for the file pywavelets-1.6.0rc1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pywavelets-1.6.0rc1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c7182af8a26e1b48f1bf16c0f226241525a79072e637db156892281dfe87e850
MD5 be970c00d29594c5dc1c25f96ff5e690
BLAKE2b-256 3f60e2420d4e25af0f507048058c90df8f0b4cca4e0797e55edbe7704b493ffc

See more details on using hashes here.

File details

Details for the file pywavelets-1.6.0rc1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pywavelets-1.6.0rc1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4874440ae559fdf2a1c53da80087d857762640f03b2f39cbb5dfe390de6230da
MD5 7541a07cda91140907b0f81077ffbf4d
BLAKE2b-256 e86259140d69524b51c6415aac918bda9d3114f9417893e5906b349104446847

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page