Skip to main content

PyWavelets, wavelet transform module

Reason this release was yanked:

incorrect python_requires constraint

Project description

PyWavelets is a Python wavelet transforms module that includes:

  • nD Forward and Inverse Discrete Wavelet Transform (DWT and IDWT)

  • 1D and 2D Forward and Inverse Stationary Wavelet Transform (Undecimated Wavelet Transform)

  • 1D and 2D Wavelet Packet decomposition and reconstruction

  • 1D Continuous Wavelet Tranfsorm

  • Computing Approximations of wavelet and scaling functions

  • Over 100 built-in wavelet filters and support for custom wavelets

  • Single and double precision calculations

  • Real and complex calculations

  • Results compatible with Matlab Wavelet Toolbox (TM)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PyWavelets-1.4.0.tar.gz (4.6 MB view details)

Uploaded Source

Built Distributions

PyWavelets-1.4.0-cp311-cp311-win_amd64.whl (4.2 MB view details)

Uploaded CPython 3.11 Windows x86-64

PyWavelets-1.4.0-cp311-cp311-win32.whl (4.1 MB view details)

Uploaded CPython 3.11 Windows x86

PyWavelets-1.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

PyWavelets-1.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (7.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

PyWavelets-1.4.0-cp311-cp311-macosx_11_0_arm64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

PyWavelets-1.4.0-cp311-cp311-macosx_10_13_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.11 macOS 10.13+ x86-64

PyWavelets-1.4.0-cp310-cp310-win_amd64.whl (4.2 MB view details)

Uploaded CPython 3.10 Windows x86-64

PyWavelets-1.4.0-cp310-cp310-win32.whl (4.1 MB view details)

Uploaded CPython 3.10 Windows x86

PyWavelets-1.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

PyWavelets-1.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (6.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

PyWavelets-1.4.0-cp310-cp310-macosx_11_0_arm64.whl (4.3 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

PyWavelets-1.4.0-cp310-cp310-macosx_10_13_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.10 macOS 10.13+ x86-64

PyWavelets-1.4.0-cp39-cp39-win_amd64.whl (4.2 MB view details)

Uploaded CPython 3.9 Windows x86-64

PyWavelets-1.4.0-cp39-cp39-win32.whl (4.1 MB view details)

Uploaded CPython 3.9 Windows x86

PyWavelets-1.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

PyWavelets-1.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (6.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

PyWavelets-1.4.0-cp39-cp39-macosx_11_0_arm64.whl (4.3 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

PyWavelets-1.4.0-cp39-cp39-macosx_10_13_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.9 macOS 10.13+ x86-64

PyWavelets-1.4.0-cp38-cp38-win_amd64.whl (4.2 MB view details)

Uploaded CPython 3.8 Windows x86-64

PyWavelets-1.4.0-cp38-cp38-win32.whl (4.1 MB view details)

Uploaded CPython 3.8 Windows x86

PyWavelets-1.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

PyWavelets-1.4.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (6.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

PyWavelets-1.4.0-cp38-cp38-macosx_11_0_arm64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

PyWavelets-1.4.0-cp38-cp38-macosx_10_13_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

File details

Details for the file PyWavelets-1.4.0.tar.gz.

File metadata

  • Download URL: PyWavelets-1.4.0.tar.gz
  • Upload date:
  • Size: 4.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for PyWavelets-1.4.0.tar.gz
Algorithm Hash digest
SHA256 8e22ec03e5727dbec1ed1771b92e26ac2b484a21b716776d6ee5183da76bd911
MD5 02734033af93e46435a63a0e27eb2f87
BLAKE2b-256 48ecfe84e23bf150a473532937716ffc6c783b53337936e17b3bb1e2a3b42156

See more details on using hashes here.

File details

Details for the file PyWavelets-1.4.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for PyWavelets-1.4.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 761a6a6d4ebbd5fd351da4a083649e3da28c52c60d5ff8ab8fe713edc4302060
MD5 fee49a9cd2a0cc734cf289a5916710a7
BLAKE2b-256 896281f12ac7d6c359e147c5c4ccbdf651a05d10e8e30d7a19ca01a21078c291

See more details on using hashes here.

File details

Details for the file PyWavelets-1.4.0-cp311-cp311-win32.whl.

File metadata

  • Download URL: PyWavelets-1.4.0-cp311-cp311-win32.whl
  • Upload date:
  • Size: 4.1 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for PyWavelets-1.4.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 6b77e58ccd446822cf0e94d6b8d9a05208440742611d59bfb633ccea634fea5d
MD5 4625cdb3474fa3c9f64ac4f865140c63
BLAKE2b-256 5cece78fba5eb2d76425fd40e43ca19e1f538abb9f3e31da617b364a1246e154

See more details on using hashes here.

File details

Details for the file PyWavelets-1.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyWavelets-1.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4c836903927b3722ac57c4202fd6953c33c6785ed7c03d190995fb970fbafad5
MD5 aa6e71b5a3c26ca49ee0a1fc30a11c0c
BLAKE2b-256 0a0a0aa5817e667f0133e52f97edcc455ad574c85cce9004f92763736363fa7a

See more details on using hashes here.

File details

Details for the file PyWavelets-1.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for PyWavelets-1.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 810fca6af22cbfeb3baed6d325876930866a73ec380d2fd1e85826568bd51b75
MD5 661d012bc42cf4bb50abc81b4d61008f
BLAKE2b-256 713347e682ac8be0b50f60d2fc743bbed9b79cf9cac4e166bfd7db9b3dbe3e0a

See more details on using hashes here.

File details

Details for the file PyWavelets-1.4.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for PyWavelets-1.4.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c00bef04e2a04765edb3ec8775a57e9f0bcc3a8fdfd8c5034a4b8109c8d58dd8
MD5 f692d78240c3a183a2ab80a241d7d32c
BLAKE2b-256 e1086ed36a43c1682c49ca952ffeff6e015503a0adb54a857d7790e73f5dc67f

See more details on using hashes here.

File details

Details for the file PyWavelets-1.4.0-cp311-cp311-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for PyWavelets-1.4.0-cp311-cp311-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 089e4fb0a44ffc3f0b88d7e70667def56b335e4e7ae089b6ffcd640e6ea4df3f
MD5 ddbc6f862cd883dbd3f1df625df6da8c
BLAKE2b-256 a7971e4e55b4b5cd46d002af1348440351329d98290041905c4f0e0ffcb1fede

See more details on using hashes here.

File details

Details for the file PyWavelets-1.4.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for PyWavelets-1.4.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 fc10a518a2dcf6ed60da8ff69ac26108d52f0d05adaea547280182d57d8ba5a6
MD5 ec6fcea2e431e77dd82c629bcd2fbb7b
BLAKE2b-256 9cd997e0af3adf6256609a041349a2cafbd5ee2d13df97fe02b623f320096aad

See more details on using hashes here.

File details

Details for the file PyWavelets-1.4.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: PyWavelets-1.4.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 4.1 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for PyWavelets-1.4.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 d9236d7d2334bf75c05943b20f43004559719bd4e732be08538f0900b8dd833c
MD5 407fe39fc90b4c9fa80506580072c902
BLAKE2b-256 a902f0dbebff20a794056989f709cd3c9ea8ee80518d1e87d251b3f8a3a655d9

See more details on using hashes here.

File details

Details for the file PyWavelets-1.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyWavelets-1.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 eea7b7f5cb659b2cf7154fb6b0fda1bb8e02f0590870a490e931db953b6f7434
MD5 094b128ac4188c9dfdb52c724b55d538
BLAKE2b-256 dd243bd3e2a104dfc26a39b837fafa86b740f0b86982a48e4065046c23378f98

See more details on using hashes here.

File details

Details for the file PyWavelets-1.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for PyWavelets-1.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1f21f69b858e02b448b071f3694cd7df131171d23d6191172b30e6364d81a795
MD5 7c3e10b6c0b26878deeade611b63cc9f
BLAKE2b-256 5098840eaf015bf729cb3ff2cf0ca95aedb511800c6fbe30ac4ceed29f61b506

See more details on using hashes here.

File details

Details for the file PyWavelets-1.4.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for PyWavelets-1.4.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e1b8ce21949c2f763cb8d9a605eb0a2d27f4bf09d1fac736e265f0531c3b88fd
MD5 2836ce69ba781b4199a0b3aeb387be95
BLAKE2b-256 188218d3d47462fdd4dbbf260416c3be0d94ea3689845ff9a76bc8ba31568268

See more details on using hashes here.

File details

Details for the file PyWavelets-1.4.0-cp310-cp310-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for PyWavelets-1.4.0-cp310-cp310-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 19e4d81f1f6b74ac413959280949da98c1c3557f97dc110dd6a1d2ddf9acb553
MD5 119962620282caae64165d169bf7ca90
BLAKE2b-256 f5abb91503b640e8584a980d358422baa9e91b32df1e7b37f1031b3ff6087762

See more details on using hashes here.

File details

Details for the file PyWavelets-1.4.0-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for PyWavelets-1.4.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 8cb5815ed59f0722d33dc58d07104f20a7861f09780fe739cc2dc5b68e54abf9
MD5 9ed55510146d349898908fc5705da1c4
BLAKE2b-256 1c57f43c8d01e494d6af3007a339b757893883388955f186587f708277ca95f6

See more details on using hashes here.

File details

Details for the file PyWavelets-1.4.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: PyWavelets-1.4.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 4.1 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for PyWavelets-1.4.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 3ca408f4a060474d570240f4a32d324672f13e6e626733f1ae28252bd2d3645f
MD5 84b35edefcc64bd16fcb554c00e63b58
BLAKE2b-256 635e04a1b7054f2cdf2330e6df5ab36e1c072a51abfd29b28a9d7007cb97dbd2

See more details on using hashes here.

File details

Details for the file PyWavelets-1.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyWavelets-1.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d9b4bad14dd34c30f4ead8c3571115a2ae313bab065dd8804fee7d5d441133d4
MD5 8fdc0c948871ea53992c7e71417308d7
BLAKE2b-256 5a1d0b6fe334f56622e451f64cfa04e95d74533748bc9610f8e89c458eddc02a

See more details on using hashes here.

File details

Details for the file PyWavelets-1.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for PyWavelets-1.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e4b092b2cfb35d94153a754b9080c679b8ec96bd540124740b3ee3fa43f47ce5
MD5 31ac1382c339daec99048e0980543b1d
BLAKE2b-256 01b58010757ff891baa310b0665e2a07a1885044edc7a4c01bf317e91c7a4692

See more details on using hashes here.

File details

Details for the file PyWavelets-1.4.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for PyWavelets-1.4.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 880a70e3756ab744c748aa930e2cf417cf5b2918a5e5fc1098235ea92a47282b
MD5 4a00216dfb94ee453fa8519604e2c566
BLAKE2b-256 2e9f3b3e153e1556ee8582a9d4e91d17685cffe52b24643287529084f1e854dc

See more details on using hashes here.

File details

Details for the file PyWavelets-1.4.0-cp39-cp39-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for PyWavelets-1.4.0-cp39-cp39-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 1c87fab9e20e2b0221287c2a3fba257c01aaec2b02fb9de3aaa5569167b869f7
MD5 197df09a245e78ea90b288764d32e302
BLAKE2b-256 106bdc3298bf2f58b6d5f993f6341b393b13313c4c265dbc039814d6b93bf49a

See more details on using hashes here.

File details

Details for the file PyWavelets-1.4.0-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for PyWavelets-1.4.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 d7d79d6a515db7e6c421627c4b1e75a8665c4e1fbd5e652e08b81d35b4dba185
MD5 b6f7f58ef3fd902e4445a2b9cdffc2e9
BLAKE2b-256 7e0c6300d8b7e13dba783ce762a538e0f24321911e052d2aa505ca87c5e3e60f

See more details on using hashes here.

File details

Details for the file PyWavelets-1.4.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: PyWavelets-1.4.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 4.1 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for PyWavelets-1.4.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 602393f477cddb96af7174cdbf6643f9070a0f42e958abf49ee670f6c34c75f8
MD5 02cee720592ab67e30100ec42bcb469e
BLAKE2b-256 dbe7eac7b780df00ae5dbbc1fd904d11eaccbca884d39916851eed8c6671f338

See more details on using hashes here.

File details

Details for the file PyWavelets-1.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for PyWavelets-1.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 297a8cd420ce66bdfdffdb2f6a03259e3d800c8d8961794ab3e8f627ecfb3509
MD5 208f7f6dbfc7db3160da997f51ae0458
BLAKE2b-256 683d67175450c850a58d82726ffa9cd8a7eb21aceec7a783870ac57b1a41ab6c

See more details on using hashes here.

File details

Details for the file PyWavelets-1.4.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for PyWavelets-1.4.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b8f9e5126a9c45462ec4f116c1c34888c62f82bd208deca3d09ceaab1bf11645
MD5 7da203e10c4b95256d3d3f0961b03792
BLAKE2b-256 0779963fc3a02896c8b58c504064054927e8e07b961cfa66e467c7448277c689

See more details on using hashes here.

File details

Details for the file PyWavelets-1.4.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for PyWavelets-1.4.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 454458697a241cda239e56ff3bdfac43268926cd2c48827e85f06967f2f38312
MD5 cd473379d7f234e8ad29715234456520
BLAKE2b-256 f6444aa651f944fb4e111197b7bcea4dd79b19052803e5b12189716e0d2ab602

See more details on using hashes here.

File details

Details for the file PyWavelets-1.4.0-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for PyWavelets-1.4.0-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 4b1f0002e8748fefeface460142e4356c76b75d97a278902790bab37bd0f148d
MD5 ea9496238d21bcf29ac06a848d8ec56e
BLAKE2b-256 b5e3b401be030aa5838ef49f7101711f971a179bd21b8583e57fe651707e2489

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page