Skip to main content

BigQuery Foreign Data Wrapper for PostgreSQL

Project description

bigquery\_fdw: BigQuery Foreign Data Wrapper for PostgreSQL
===========================================================

bigquery\_fdw is a BigQuery foreign data wrapper for PostgreSQL using
`Multicorn <https://github.com/Kozea/Multicorn>`__.

It allows to write queries in PostgreSQL SQL syntax using a foreign
table. It supports most of BigQuery's `data
types <docs/data_types.md>`__ and `operators <docs/operators.md>`__.

Features and limitations
------------------------

- Table partitioning is supported. You can use partitions in your SQL
queries.
- Queries are parameterized when sent to BigQuery
- BigQuery's standard SQL support (legacy SQL is not supported)
- Authentication works with a "Service Account" Json private key

Requirements
------------

- PostgreSQL >= 9.5
- Python 3

Dependencies
------------

Dependencies required to install bigquery\_fdw:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- ``postgresql-server-dev-X.Y``
- ``python3-pip``
- ``python3-dev``
- ``make``
- ``gcc``

Major dependencies installed automatically during the installation process:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- `Google Cloud
BigQuery <https://pypi.org/project/google-cloud-bigquery/>`__
- `Multicorn <https://github.com/Kozea/Multicorn>`__

Installation
------------

::

# Install `setuptools` if necessary
pip3 install --upgrade setuptools

# Install Multicorn
git clone git://github.com/Kozea/Multicorn.git
export PYTHON_OVERRIDE=python3
make && make install

# Install bigquery_fdw
pip3 install bigquery_fdw

Usage
-----

We recommend testing the `BigQuery client
connectivity <docs/test_client.md>`__ before trying to use the FDW.

With ``psql``:

.. code:: sql

CREATE EXTENSION multicorn;

CREATE SERVER bigquery_srv FOREIGN DATA WRAPPER multicorn
OPTIONS (
wrapper 'bigquery_fdw.fdw.ConstantForeignDataWrapper'
);

CREATE FOREIGN TABLE my_bigquery_table (
column1 text,
column2 bigint
) SERVER bigquery_srv
OPTIONS (
fdw_dataset 'my_dataset',
fdw_table 'my_table',
fdw_key '/opt/bigquery_fdw/user.json'
);

Options
-------

List of options implemented in ``CREATE FOREIGN TABLE`` syntax:

+--------+-------+-------+
| Option | Defau | Descr |
| | lt | iptio |
| | | n |
+========+=======+=======+
| ``fdw_ | - | BigQu |
| datase | | ery |
| t`` | | datas |
| | | et |
| | | name |
+--------+-------+-------+
| ``fdw_ | - | BigQu |
| table` | | ery |
| ` | | table |
| | | name |
+--------+-------+-------+
| ``fdw_ | - | Path |
| key`` | | to |
| | | priva |
| | | te |
| | | Json |
| | | key |
| | | (See |
| | | `Key |
| | | stora |
| | | ge |
| | | recom |
| | | menda |
| | | tions |
| | | <doc |
| | | s/key |
| | | _stor |
| | | age.m |
| | | d>`__ |
| | | ) |
+--------+-------+-------+
| ``fdw_ | ``'fa | Set |
| verbos | lse'` | to |
| e`` | ` | ``'tr |
| | | ue'`` |
| | | to |
| | | outpu |
| | | t |
| | | debug |
| | | infor |
| | | matio |
| | | n |
| | | in |
| | | Postr |
| | | geSQL |
| | | 's |
| | | logs |
+--------+-------+-------+
| ``fdw_ | ``'st | BigQu |
| sql_di | andar | ery |
| alect` | d'`` | SQL |
| ` | | diale |
| | | ct. |
| | | Curre |
| | | ntly |
| | | only |
| | | ``sta |
| | | ndard |
| | | `` |
| | | is |
| | | suppo |
| | | rted. |
+--------+-------+-------+

Table partitioning
------------------

BigQuery **table partitioning is supported**. When partitioning a table,
BigQuery creates a pseudo column called ``_PARTITIONTIME``.

To use partitions, you need to add a column ``partition_date`` with the
type ``date`` in the foreign table definition, for example:

.. code:: sql

CREATE FOREIGN TABLE my_bigquery_table (
column1 text,
column2 bigint,
partition_date date -- <-- partition!
) SERVER bigquery_srv
OPTIONS (
fdw_dataset 'my_dataset',
fdw_table 'my_table',
fdw_key '/opt/bigquery_fdw/user.json'
);

You can then use the partition in the ``WHERE`` clause:

.. code:: sql

SELECT column1, column2
FROM my_bigquery_table
WHERE column1 = 'abc' AND partition_date = '2017-12-01'

More documentation
------------------

See `/docs </docs>`__.


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bigquery_fdw-1.0.tar.gz (7.4 kB view details)

Uploaded Source

Built Distribution

bigquery_fdw-1.0-py2.py3-none-any.whl (10.6 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file bigquery_fdw-1.0.tar.gz.

File metadata

  • Download URL: bigquery_fdw-1.0.tar.gz
  • Upload date:
  • Size: 7.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for bigquery_fdw-1.0.tar.gz
Algorithm Hash digest
SHA256 8eb514c0ca59d86efcde440f8faf13e94d8ab4aafac6cf8788543840850f7f57
MD5 5cceaa8d4e315a1f59d86291fca93503
BLAKE2b-256 2b1e3dc15127b22c2fdf91f6be2195eddd6ff3bdf4431ae6436b433edb24ed64

See more details on using hashes here.

File details

Details for the file bigquery_fdw-1.0-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for bigquery_fdw-1.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 f1087f5d28e6763a8afd51c2feb376185f5093d5e16bc5633483360193eff099
MD5 c6a1426bc412cd224684ad3c4acd764b
BLAKE2b-256 e76af72cff8ea3a42d7f835c81f5d8876405f743ec02f563224289045df59bd8

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page