Skip to main content

Multimodal models of 20 normal brains

Project description

The relevant file is README.ipynb, accessible via any of the following:

BrainWeb: Multimodal models of 20 normal brains

Download and Preprocessing for PET-MR Simulations

This notebook will not re-download/re-process files if they already exist.

  • Output data

  • ~/.brainweb/subject_*.npz: dtype(shape): float32(127, 344, 344)

  • Raw data source

  • ~/.brainweb/subject_*.bin.gz: dtype(shape): uint16(362, 434, 362)

  • Prerequisites

  • Python: requirements.txt (e.g. pip install -r ../../requirements.txt)


from __future__ import print_function, division
%matplotlib notebook
import brainweb
from brainweb import volshow
import numpy as np
from os import path
from tqdm.auto import tqdm
import logging
logging.basicConfig(level=logging.INFO)

Raw Data

# download
files = brainweb.get_files()

# read last file
data = brainweb.load_file(files[-1])

# show last subject
print(files[-1])
volshow(data, cmaps=['gist_ncar']);
~/.brainweb/subject_54.bin.gz
raw.png

Transform

Convert raw image data:

  • Siemens Biograph mMR resolution (~2mm) & dimensions (127, 344, 344)

  • PET/T1/T2/uMap intensities

  • randomised structure for PET/T1/T2

  • t (1 + g [2 G_sigma(r) - 1]), where

    • r = rand(127, 344, 344) in [0, 1),

    • Gaussian smoothing sigma = 1,

    • g = 1 for PET; 0.75 for MR, and

    • t = the PET or MR piecewise constant phantom

brainweb.seed(1337)

for f in tqdm(files, desc="mMR ground truths", unit="subject"):
    vol = brainweb.get_mmr_fromfile(
        f,
        petNoise=1, t1Noise=0.75, t2Noise=0.75,
        petSigma=1, t1Sigma=1, t2Sigma=1)
# show last subject
print(f)
volshow([vol['PET' ][:, 100:-100, 100:-100],
         vol['uMap'][:, 100:-100, 100:-100],
         vol['T1'  ][:, 100:-100, 100:-100],
         vol['T2'  ][:, 100:-100, 100:-100]],
        cmaps=['hot', 'bone', 'Greys_r', 'Greys_r'],
        titles=["PET", "uMap", "T1", "T2"]);
~/.brainweb/subject_54.bin.gz
mMR.png
# add some lesions
brainweb.seed(1337)
im3d = brainweb.add_lesions(vol['PET'])
volshow(im3d[:, 100:-100, 100:-100], cmaps=['hot']);
lesions.png

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

brainweb-0.3.2.tar.gz (148.2 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

brainweb-0.3.2-py2.py3-none-any.whl (8.1 kB view details)

Uploaded Python 2Python 3

File details

Details for the file brainweb-0.3.2.tar.gz.

File metadata

  • Download URL: brainweb-0.3.2.tar.gz
  • Upload date:
  • Size: 148.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.4.2 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.8.0 tqdm/4.32.2 CPython/2.7.15

File hashes

Hashes for brainweb-0.3.2.tar.gz
Algorithm Hash digest
SHA256 4122ef431f9782d23db006d7db76ce57e5206b037977de1ee28c5b54526c6582
MD5 464b82e75b8341c227f00ad99cc7f5fe
BLAKE2b-256 8f59e080b43cdd9fb2a73d52b97bf984efd15c8a4f32da63f0270b053eafb770

See more details on using hashes here.

File details

Details for the file brainweb-0.3.2-py2.py3-none-any.whl.

File metadata

  • Download URL: brainweb-0.3.2-py2.py3-none-any.whl
  • Upload date:
  • Size: 8.1 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.4.2 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.8.0 tqdm/4.32.2 CPython/2.7.15

File hashes

Hashes for brainweb-0.3.2-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 2e1c26457be7737c705c8108f210ae82a7cd57ff9fd4ed975fe9ff964a8ed182
MD5 886953356f11a856a4c315f14a9f8a2f
BLAKE2b-256 49f3182d1658854c1e28a488fa21bd013938706c77c5afca463a5c0aeaa9417d

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page