A collection sklearn transformers to encode categorical variables as numeric
Project description
A set of example problems examining different encoding methods for categorical variables for the purpose of classification. Optionally, install the library of encoders as a package and use them in your projects directly. They are all available as methods or as scikit-learn compatible transformers.
Docs [here](http://wdm0006.github.io/categorical_encoding/)
Encoding Methods
- Ordinal
- One-Hot
- Binary
- Helmert Contrast
- Sum Contrast
- Polynomial Contrast
- Backward Difference Contrast
- Simple Hashing
Usage
Either run the examples in encoding_examples.py, or install as:
pip install category_encoders
To use:
import category_encoders as ce
encoder = ce.BackwardDifferenceEncoder(cols=[…]) encoder = ce.BinaryEncoder(cols=[…]) encoder = ce.HashingEncoder(cols=[…]) encoder = ce.HelmertEncoder(cols=[…]) encoder = ce.OneHotEncoder(cols=[…]) encoder = ce.OrdinalEncoder(cols=[…]) encoder = ce.SumEncoder(cols=[…]) encoder = ce.PolynomialEncoder(cols=[…])
All of these are fully compatible sklearn transformers, so they can be used in pipelines or in your existing scripts. If the cols parameter isn’t passed, every column will be encoded, so be careful with that.
Datasets
The datasets used in the examples are car, mushroom, and splice datasets from the UCI dataset repository, found here:
[datasets](https://archive.ics.uci.edu/ml/datasets)
License
BSD
Project details
Release history Release notifications
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Filename, size | File type | Python version | Upload date | Hashes |
---|---|---|---|---|
Filename, size category_encoders-1.0.3.tar.gz (5.4 kB) | File type Source | Python version None | Upload date | Hashes View hashes |