Skip to main content

A collection sklearn transformers to encode categorical variables as numeric

Project description

[![Travis Status](https://travis-ci.org/wdm0006/categorical_encoding.svg?branch=master)](https://travis-ci.org/wdm0006/categorical_encoding) [![Coveralls Status](https://coveralls.io/repos/wdm0006/categorical_encoding/badge.svg?branch=master&service=github)](https://coveralls.io/r/wdm0006/categorical_encoding) [![CircleCI Status](https://circleci.com/gh/wdm0006/categorical_encoding.svg?style=shield&circle-token=:circle-token)](https://circleci.com/gh/wdm0006/categorical_encoding/tree/master)

A set of scikit-learn-style transformers for encoding categorical variables into numeric by means of different techniques.

Encoding Methods

  • Ordinal [2][3]
  • One-Hot [2][3]
  • Binary
  • Helmert Contrast [2][3]
  • Sum Contrast [2][3]
  • Polynomial Contrast [2][3]
  • Backward Difference Contrast [2][3]
  • Hashing [1]

Usage

The package by itself comes with a single module and an estimator. Before installing the module you will need numpy, statsmodels, and scipy.

To install the module execute:

`shell $ python setup.py install `

or

` pip install category_encoders `

or

` conda install -c conda-forge category_encoders `

To use:

import category_encoders as ce

encoder = ce.BackwardDifferenceEncoder(cols=[…]) encoder = ce.BinaryEncoder(cols=[…]) encoder = ce.HashingEncoder(cols=[…]) encoder = ce.HelmertEncoder(cols=[…]) encoder = ce.OneHotEncoder(cols=[…]) encoder = ce.OrdinalEncoder(cols=[…]) encoder = ce.SumEncoder(cols=[…]) encoder = ce.PolynomialEncoder(cols=[…])

All of these are fully compatible sklearn transformers, so they can be used in pipelines or in your existing scripts. If the cols parameter isn’t passed, every non-numeric column will be encoded. Please see the docs for transformer-specific configuration options.

Examples

In the examples directory, there is an example script used to benchmark different encoding techniques on various datasets.

The datasets used in the examples are car, mushroom, and splice datasets from the UCI dataset repository, found here:

[datasets](https://archive.ics.uci.edu/ml/datasets)

License

BSD 3-Clause

References:

  1. Kilian Weinberger; Anirban Dasgupta; John Langford; Alex Smola; Josh Attenberg (2009). Feature Hashing for Large Scale Multitask Learning. Proc. ICML.
  2. Contrast Coding Systems for categorical variables. UCLA: Statistical Consulting Group. from http://www.ats.ucla.edu/stat/r/library/contrast_coding.
  3. Gregory Carey (2003). Coding Categorical Variables, from http://psych.colorado.edu/~carey/Courses/PSYC5741/handouts/Coding%20Categorical%20Variables%202006-03-03.pdf

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for category-encoders, version 1.2.3
Filename, size File type Python version Upload date Hashes
Filename, size category_encoders-1.2.3.tar.gz (11.0 kB) File type Source Python version None Upload date Hashes View hashes

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page