CStreet is a python script (python 3.6 or higher) for cell states trajectory construction by using k-nearest neighbors graph algorithm for time-series single-cell RNA-seq data.
Project description
CStreet Overview
CStreet is a python script (python 3.6 or higher) for cell states trajectory construction by using k-nearest neighbors graph algorithm for time-series single-cell RNA-seq data. It is a developmental version.
Installation
-
Install CStreet by
pip3
CStreet can be installed directly by using
pip3
commands :$ pip3 install cstreet
Quick Start
Input file: Only expression matrix containing the time-series expression level as reads counts or normalized values for this developmental version.
Output file: An inferenced cell states trajectory.
-
Add new time-series single cell RNA-seq data.
from cstreet import * import pandas as pd # Read single cell data as DataFrame data_t1=pd.read_table('data_t1.txt',header=0, sep="\t",index_col=0) data_t2=pd.read_table('data_t2.txt',header=0, sep="\t",index_col=0) data_t3=pd.read_table('data_t3.txt',header=0, sep="\t",index_col=0) # Create a new CStreet object cdata=CStreetData() # add data into CStreet object cdata.add_new_timepoint_scdata(data_t1) cdata.add_new_timepoint_scdata(data_t2) cdata.add_new_timepoint_scdata(data_t3)
-
Customize parameters.
#Step0:basic parameters cdata.params.output_dir="./" cdata.params.output_name="cstreet_project" #Step1:cell cluster cdata.params.cell_cluster_pca_n=10 cdata.params.cell_cluster_knn_n=15 cdata.params.cell_cluster_resolution=0.1 #Step2:gene and cell filter cdata.params.filter_dead_cell=True cdata.params.percent_mito_cutoff=0.2 cdata.params.filter_lowcell_gene=True cdata.params.min_cells=3 cdata.params.filter_lowgene_cells=True cdata.params.min_genes=200 #Step3:normalize cdata.params.normalize=True cdata.params.normalize_base=10000 cdata.params.log_transform=True #Step4:get HVG cdata.params.highly_variable_genes=False #Step5:get graph cdata.params.inner_graph_pca_n=10 cdata.params.inner_graph_knn_n=15 cdata.params.link_graph_pca_n=10 cdata.params.link_graph_knn_n=15 cdata.params.max_outgoing=10 cdata.params.min_score=0.1 cdata.params.min_cell_number=50
-
Run CStreet
cdata.run_cstreet()
Result
An example of inferenced cell trajectory:
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file cstreet-0.0.6.tar.gz
.
File metadata
- Download URL: cstreet-0.0.6.tar.gz
- Upload date:
- Size: 14.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.50.1 CPython/3.6.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
26c05cd6973ed38aab20bcae916fbe7713aa3e801243fa6728dd993604a0faab
|
|
MD5 |
400abbe4d709efbc8273883e993f2fc0
|
|
BLAKE2b-256 |
730e64f303749513e94d0c82a5e53e806afa80ec73b7005644ce25fa606088d3
|