Skip to main content

Lightning-fast PII detection and anonymization library with 190x performance advantage

Project description

DataFog Python

DataFog is a Python library for detecting and redacting personally identifiable information (PII).

It provides:

  • Fast structured PII detection via regex
  • Optional NER support via spaCy and GLiNER
  • A simple agent-oriented API for LLM applications
  • Backward-compatible DataFog and TextService classes

Installation

# Core install (regex engine)
pip install datafog

# Add spaCy support
pip install datafog[nlp]

# Add GLiNER + spaCy support
pip install datafog[nlp-advanced]

# Everything
pip install datafog[all]

Quick Start

import datafog

text = "Contact john@example.com or call (555) 123-4567"
clean = datafog.sanitize(text, engine="regex")
print(clean)
# Contact [EMAIL_1] or call [PHONE_1]

For LLM Applications

import datafog

# 1) Scan prompt text before sending to an LLM
prompt = "My SSN is 123-45-6789"
scan_result = datafog.scan_prompt(prompt, engine="regex")
if scan_result.entities:
    print(f"Detected {len(scan_result.entities)} PII entities")

# 2) Redact model output before returning it
output = "Email me at jane.doe@example.com"
safe_result = datafog.filter_output(output, engine="regex")
print(safe_result.redacted_text)
# Email me at [EMAIL_1]

# 3) One-liner redaction
print(datafog.sanitize("Card: 4111-1111-1111-1111", engine="regex"))
# Card: [CREDIT_CARD_1]

Guardrails

import datafog

# Reusable guardrail object
guard = datafog.create_guardrail(engine="regex", on_detect="redact")

@guard
def call_llm() -> str:
    return "Send to admin@example.com"

print(call_llm())
# Send to [EMAIL_1]

Engines

Use the engine that matches your accuracy and dependency constraints:

  • regex:
    • Fastest and always available.
    • Best for structured entities: EMAIL, PHONE, SSN, CREDIT_CARD, IP_ADDRESS, DATE, ZIP_CODE.
  • spacy:
    • Requires pip install datafog[nlp].
    • Useful for unstructured entities like person and organization names.
  • gliner:
    • Requires pip install datafog[nlp-advanced].
    • Stronger NER coverage than regex for unstructured text.
  • smart:
    • Cascades regex with optional NER engines.
    • If optional deps are missing, it degrades gracefully and warns.

Backward-Compatible APIs

The existing public API remains available.

DataFog class

from datafog import DataFog

result = DataFog().scan_text("Email john@example.com")
print(result["EMAIL"])

TextService class

from datafog.services import TextService

service = TextService(engine="regex")
result = service.annotate_text_sync("Call (555) 123-4567")
print(result["PHONE"])

CLI

# Scan text
datafog scan-text "john@example.com"

# Redact text
datafog redact-text "john@example.com"

# Replace text with pseudonyms
datafog replace-text "john@example.com"

# Hash detected entities
datafog hash-text "john@example.com"

Telemetry

DataFog includes anonymous telemetry by default.

To opt out:

export DATAFOG_NO_TELEMETRY=1
# or
export DO_NOT_TRACK=1

Telemetry does not include input text or detected PII values.

Development

git clone https://github.com/datafog/datafog-python
cd datafog-python
python -m venv .venv
source .venv/bin/activate  # Windows: .venv\Scripts\activate
pip install -e ".[all,dev]"
pytest tests/

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

datafog-4.3.0.tar.gz (72.9 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

datafog-4.3.0-py3-none-any.whl (60.8 kB view details)

Uploaded Python 3

File details

Details for the file datafog-4.3.0.tar.gz.

File metadata

  • Download URL: datafog-4.3.0.tar.gz
  • Upload date:
  • Size: 72.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.11.14

File hashes

Hashes for datafog-4.3.0.tar.gz
Algorithm Hash digest
SHA256 06331ea195fe2761a0c051f6f0052baf2aa54578a22d93acb57f86d6f818e9c4
MD5 91773ffd4d951ac05768105ed3e9f2d4
BLAKE2b-256 5f17c34455bd50a7178bd53e7c27e16afe946e614a395313fb181d69ff7e07e9

See more details on using hashes here.

File details

Details for the file datafog-4.3.0-py3-none-any.whl.

File metadata

  • Download URL: datafog-4.3.0-py3-none-any.whl
  • Upload date:
  • Size: 60.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.11.14

File hashes

Hashes for datafog-4.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 0f27dadca6a6c05d436be1708958562d6028a3ba5b970de7e10105b65a50029a
MD5 a1a96a93a57848ba4c02db94cc459898
BLAKE2b-256 bdfad62cd25470e4705db00dec00907a92dbe0ff2b9c249583dc22d9f9e1358c

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page