Skip to main content

Library for real-time deformability cytometry (RT-DC)

Project description

PyPI Version Build Status Coverage Status Docs Status

This is a Python library for the post-measurement analysis of real-time deformability cytometry (RT-DC) datasets; an essential part of the DC Cosmos ( DCscope, DCOR, DCOR-Aid, DCTag, DCKit, ).

Documentation

The documentation, including the code reference and examples, is available at dclab.readthedocs.io.

Installation

pip install dclab[all]

For more options, please check out the documentation.

Information for developers

Contributing

The main branch for developing dclab is master. If you want to make small changes like one-liners, documentation, or default values in the configuration, you may work on the master branch. If you want to change more, please (fork dclab and) create a separate branch, e.g. my_new_feature_dev, and create a pull-request once you are done making your changes. Please make sure to edit the Changelog.

Very important: Please always try to use

git pull --rebase

instead of:

git pull

to prevent non-linearities in the commit history.

Tests

dclab is tested using pytest. If you have the time, please write test methods for your code and put them in the tests directory. To run the tests, install pytest and run:

pytest tests

Docs

The docs are built with sphinx. Please make sure they compile when you change them (this also includes function doc strings):

cd docs
pip install -r requirements.txt
sphinx-build . _build  # open "index.html" in the "_build" directory

PEP8

We use flake8 to enforce coding style:

pip install flake8
flake8 --exclude _version.py dclab
flake8 docs
flake8 examples
flake8 tests

Type Hinting

For type hinting and docstring styling, try to keep the Code Reference readable in the documentation website. If in doubt just ask, or look at the examples in the codebase.

  • Simple type combintions such as float or str | pathlib.Path should be included as type hints, but do not need to be included in the docstring parameter description.

  • More involved type hints can have extra information in the docstring. For example for numpy arrays, npt.NDArray[np.bool] doesn’t render in a readable way in the Code Reference, and doesn’t include shape. Therefore, you can also keep the docstring parameter description with the shape and dtype information e.g., binary ndarray of shape (M, N).

Incrementing version

Dclab gets its version from the latest git tag. If you think that a new version should be published, create a tag on the master branch (if you have the necessary permissions to do so):

git tag -a "0.1.3"
git push --tags origin

Appveyor and GitHub Actions will then automatically build source package and wheels and publish them on PyPI.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

dclab-0.67.3.tar.gz (4.8 MB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

dclab-0.67.3-cp314-cp314t-win_amd64.whl (943.6 kB view details)

Uploaded CPython 3.14tWindows x86-64

dclab-0.67.3-cp314-cp314t-macosx_11_0_arm64.whl (925.6 kB view details)

Uploaded CPython 3.14tmacOS 11.0+ ARM64

dclab-0.67.3-cp314-cp314t-macosx_10_15_x86_64.whl (926.4 kB view details)

Uploaded CPython 3.14tmacOS 10.15+ x86-64

dclab-0.67.3-cp314-cp314-win_amd64.whl (899.7 kB view details)

Uploaded CPython 3.14Windows x86-64

dclab-0.67.3-cp314-cp314-macosx_11_0_arm64.whl (907.0 kB view details)

Uploaded CPython 3.14macOS 11.0+ ARM64

dclab-0.67.3-cp314-cp314-macosx_10_15_x86_64.whl (910.9 kB view details)

Uploaded CPython 3.14macOS 10.15+ x86-64

dclab-0.67.3-cp313-cp313-win_amd64.whl (880.6 kB view details)

Uploaded CPython 3.13Windows x86-64

dclab-0.67.3-cp313-cp313-musllinux_1_2_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ x86-64

dclab-0.67.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ x86-64

dclab-0.67.3-cp313-cp313-macosx_11_0_arm64.whl (904.6 kB view details)

Uploaded CPython 3.13macOS 11.0+ ARM64

dclab-0.67.3-cp313-cp313-macosx_10_13_x86_64.whl (910.0 kB view details)

Uploaded CPython 3.13macOS 10.13+ x86-64

dclab-0.67.3-cp312-cp312-win_amd64.whl (881.2 kB view details)

Uploaded CPython 3.12Windows x86-64

dclab-0.67.3-cp312-cp312-musllinux_1_2_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ x86-64

dclab-0.67.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

dclab-0.67.3-cp312-cp312-macosx_11_0_arm64.whl (906.2 kB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

dclab-0.67.3-cp312-cp312-macosx_10_13_x86_64.whl (912.1 kB view details)

Uploaded CPython 3.12macOS 10.13+ x86-64

dclab-0.67.3-cp311-cp311-win_amd64.whl (881.1 kB view details)

Uploaded CPython 3.11Windows x86-64

dclab-0.67.3-cp311-cp311-musllinux_1_2_x86_64.whl (2.3 MB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ x86-64

dclab-0.67.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

dclab-0.67.3-cp311-cp311-macosx_11_0_arm64.whl (906.0 kB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

dclab-0.67.3-cp311-cp311-macosx_10_9_x86_64.whl (911.6 kB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

dclab-0.67.3-cp310-cp310-win_amd64.whl (881.7 kB view details)

Uploaded CPython 3.10Windows x86-64

dclab-0.67.3-cp310-cp310-musllinux_1_2_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.10musllinux: musl 1.2+ x86-64

dclab-0.67.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

dclab-0.67.3-cp310-cp310-macosx_11_0_arm64.whl (907.7 kB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

dclab-0.67.3-cp310-cp310-macosx_10_9_x86_64.whl (913.0 kB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

dclab-0.67.3-cp39-cp39-win_amd64.whl (882.5 kB view details)

Uploaded CPython 3.9Windows x86-64

dclab-0.67.3-cp39-cp39-musllinux_1_2_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.9musllinux: musl 1.2+ x86-64

dclab-0.67.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

dclab-0.67.3-cp39-cp39-macosx_11_0_arm64.whl (908.9 kB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

dclab-0.67.3-cp39-cp39-macosx_10_9_x86_64.whl (914.3 kB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

File details

Details for the file dclab-0.67.3.tar.gz.

File metadata

  • Download URL: dclab-0.67.3.tar.gz
  • Upload date:
  • Size: 4.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.12.3

File hashes

Hashes for dclab-0.67.3.tar.gz
Algorithm Hash digest
SHA256 67b1058f059e7e32ebd55bbc283687ea854b415d0e423a914f87a03c968978a4
MD5 114b95fe23df9cefaf0b0cd062337869
BLAKE2b-256 ae91dda6cf225b0d7adfafd8f62e52501a09402dd8ec17290b5f61b274254239

See more details on using hashes here.

File details

Details for the file dclab-0.67.3-cp314-cp314t-win_amd64.whl.

File metadata

  • Download URL: dclab-0.67.3-cp314-cp314t-win_amd64.whl
  • Upload date:
  • Size: 943.6 kB
  • Tags: CPython 3.14t, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.12.10

File hashes

Hashes for dclab-0.67.3-cp314-cp314t-win_amd64.whl
Algorithm Hash digest
SHA256 5e0dd85e0834c77a2ceb63313f09c44b236aed65c3e7ceb99fabe36661dbf743
MD5 36d7883907077ce7de4e0901e1faf3aa
BLAKE2b-256 3f54d3754ee8c86a3f62560820d2a710dee4e7b4f9b5990c6665d822a69bb5e4

See more details on using hashes here.

File details

Details for the file dclab-0.67.3-cp314-cp314t-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for dclab-0.67.3-cp314-cp314t-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5b4f07f97880480796e5a5c73882401c4bb5d60f2efe97acca0531d81f1fed76
MD5 c1571be77beba863c037e1046d4f8eae
BLAKE2b-256 d5ed1b64281c1dade50ebd4fa1dad88d08367255a8ba15370e3d7410d84494e8

See more details on using hashes here.

File details

Details for the file dclab-0.67.3-cp314-cp314t-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for dclab-0.67.3-cp314-cp314t-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 157a212bf9462fcc9892e05e5efe07b7585d899eacd947efc4dd8141e44431d0
MD5 af8707933b84c92a4d55cfd08186973c
BLAKE2b-256 c9077f0b6725d5fa2f5a3b04fb5852b2fbe2f971815badf1fa5cb45d63712c64

See more details on using hashes here.

File details

Details for the file dclab-0.67.3-cp314-cp314-win_amd64.whl.

File metadata

  • Download URL: dclab-0.67.3-cp314-cp314-win_amd64.whl
  • Upload date:
  • Size: 899.7 kB
  • Tags: CPython 3.14, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.12.10

File hashes

Hashes for dclab-0.67.3-cp314-cp314-win_amd64.whl
Algorithm Hash digest
SHA256 5546b5006aa88529c8a57b7677a088de42b6df8c77f1bdb47947d7e60563584f
MD5 7696972e05d2b50a759da29960a17c88
BLAKE2b-256 261fca0e4bef2c54672b6d080c26ed954ef0cdc4439e204c2cbf7f3be0f444d4

See more details on using hashes here.

File details

Details for the file dclab-0.67.3-cp314-cp314-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for dclab-0.67.3-cp314-cp314-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f3340e291a354fe5230ab2c7c12bcccce771cb9eb9a1dde5872dd2b0f73cfb5d
MD5 c0c5e0588bf50722721318cc6f6406ea
BLAKE2b-256 8b1e4f64ea72d9b569a246f3838998e29f7826fd9f7f2c4f54b0cfd04656c779

See more details on using hashes here.

File details

Details for the file dclab-0.67.3-cp314-cp314-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for dclab-0.67.3-cp314-cp314-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 13c5027b0c5cd3ba0a5d23e42761abaa129261bbe36e997441f5b56e6fdbe8f3
MD5 c5ba739c13754edb3c1e85c00bb38d11
BLAKE2b-256 8d5748ba577da23084e35a790f2ea192e2efe75fce777bd02ecf05ddfe4d60e7

See more details on using hashes here.

File details

Details for the file dclab-0.67.3-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: dclab-0.67.3-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 880.6 kB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.12.10

File hashes

Hashes for dclab-0.67.3-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 958ac002b645515f5a914f403f2a49312019f122eb5b795314b1bac90a633432
MD5 ffb270851293474a2c88abff570162b9
BLAKE2b-256 f360ee27db0db5a02777d4a31494af04fb97fd0cb50bc4c46292c538b3eafe83

See more details on using hashes here.

File details

Details for the file dclab-0.67.3-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for dclab-0.67.3-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 17ce1d3410c400d37abb0ff338470018011470832c1ea20f3f296fdd3aa84c5b
MD5 3ca67b9a922f24e962ef435777aa52d9
BLAKE2b-256 105d55801e15769311ef613a66300d03543c7decde317c900459a520bea0e99e

See more details on using hashes here.

File details

Details for the file dclab-0.67.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dclab-0.67.3-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 970912ebc12eccd610765c2dbdb048427b795e6d1cfac7125284c3f80a0e99a2
MD5 9464bea579ec178997bb97c4edb911e7
BLAKE2b-256 6206593b3513ef8b1e531103f20525fabe82a809046b2483d3d22af62fd14bd7

See more details on using hashes here.

File details

Details for the file dclab-0.67.3-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for dclab-0.67.3-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 47bfc017fb73672909c94f405e386ba6a34edc30080e65f65090a6cf4a07b64b
MD5 6aadb6a65730e88347c5cb7fceabb8bf
BLAKE2b-256 36505748a479fb8fd86d437f68c2e9d311f148759dbce8fb1691ed4af24443d0

See more details on using hashes here.

File details

Details for the file dclab-0.67.3-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for dclab-0.67.3-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 8cba0ec2096441aec055f83d46d4915478f5bb5e5facc9bd305d294510c20cb0
MD5 689c0a40084454bca057dc6a902f1e0c
BLAKE2b-256 db9d1d76f2b4da3883525949baffbf52ebf00f3c9e935359a4c558bbca9785f1

See more details on using hashes here.

File details

Details for the file dclab-0.67.3-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: dclab-0.67.3-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 881.2 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.12.10

File hashes

Hashes for dclab-0.67.3-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 47f28f1586841ae2dae56a22496e218c281d074ab66e0927f7cea744750d80ca
MD5 40f5f132aa8879a3433f1c3bde8fc8ac
BLAKE2b-256 99ba42356bd096ef9ac1459ee3f230258dbb539e9017fbb489f02851fddf0fc0

See more details on using hashes here.

File details

Details for the file dclab-0.67.3-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for dclab-0.67.3-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 76fef63e778a31fe9bbb5162ea90d6796671c72e68b13fe192670a8fe376f862
MD5 169b49d78f66f551eab72aa13df6d8bf
BLAKE2b-256 6edefae8a0c7da542a65732e4e4433d1db7c2f350f2320746b69bff7808b5649

See more details on using hashes here.

File details

Details for the file dclab-0.67.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dclab-0.67.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 573b12b42f1753aaacae40f75aa45948073d3536fc0676de6f9a76777017c9d2
MD5 559c704a6f323a34f1df9458552a6430
BLAKE2b-256 833cf19a92cb5877b7b514089844f11367b4f6b10cb40f44ca3b0f1dc947bd37

See more details on using hashes here.

File details

Details for the file dclab-0.67.3-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for dclab-0.67.3-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c47d0fa7b1c03a4314431fd0b7008736997d5049b98adb0aeb46cde7e759ed9b
MD5 f94445e3ac9766e567951f666bd1d26a
BLAKE2b-256 5165c07fda0be4011216ec7dcbe3c03599d0e767e9853245e12ebc169e1e30c1

See more details on using hashes here.

File details

Details for the file dclab-0.67.3-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for dclab-0.67.3-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 ee13d98283f1daf078728bc8d4f238f3855b913983f6aae2bc68101b5e664d60
MD5 4faae8ed837da1a6cfceb86785067b4c
BLAKE2b-256 f952b782fe74807b8fc76b4d6f9ec65d31a0eaab9a0388f4d2a3b73f21e41fa6

See more details on using hashes here.

File details

Details for the file dclab-0.67.3-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: dclab-0.67.3-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 881.1 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.12.10

File hashes

Hashes for dclab-0.67.3-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 12d73c2e6619710b4393036ac84d1f7e6c4806b240f6d9fabaebc9453ba1097f
MD5 bb251f9a887e15d0c118846937e64296
BLAKE2b-256 96dfc3b9a8e55a41fdd3be001f11430907734660ea65da261145001f4294a852

See more details on using hashes here.

File details

Details for the file dclab-0.67.3-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for dclab-0.67.3-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 95b467f0f65052844178d725afe80783bf5acd08a00021be2fa1ebf704c2d90c
MD5 b0567d96929682156ff8246b5fafa6b6
BLAKE2b-256 403583b64b573a0e35ad8db3c6113cb9ebc59889caec675327a536bef0c3d97f

See more details on using hashes here.

File details

Details for the file dclab-0.67.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dclab-0.67.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9488cbd9dd260904ad8fc5c1ce4ab6cff8ea35ea34d51d4dfa787b5936670bfc
MD5 64484668f7dd673581aab02bf3cc3001
BLAKE2b-256 3f7ee13be9dbb6f2554c0b1c0b6a858eecb28989fb82d7b21f91248a33eb4027

See more details on using hashes here.

File details

Details for the file dclab-0.67.3-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for dclab-0.67.3-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9f9d21ca4fe3d3f348479d79bfdcb8f4ef0ecaac4b0d4ebec23f8d6cc7445e00
MD5 1753d86bad620f750ea051b014761030
BLAKE2b-256 d6ee5374af633a18a26cbb2f0c816f7a6ee19c2cfaa632c4c1adfb8c4badf170

See more details on using hashes here.

File details

Details for the file dclab-0.67.3-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for dclab-0.67.3-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0f34a4c8713b37daaeb80c44b464ff7fb42419b989342d2a2b0bb5ed38994ddd
MD5 5c7ddaf9f984ed24cd0484c8e427c5ac
BLAKE2b-256 b35d80d49a6061ed0ce69b7b112605204700a70f280e060d5f37bbef2d89e5ca

See more details on using hashes here.

File details

Details for the file dclab-0.67.3-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: dclab-0.67.3-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 881.7 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.12.10

File hashes

Hashes for dclab-0.67.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 1eccd94dc56fc965d087f90c429541d75ecc4a0a7bc010e4f94158bce141802a
MD5 cc04f79eb23d80385cc6287817396ff2
BLAKE2b-256 4b233a02d5c803e3dca59c9eb99781a39ab7a59b77831a677b44ae972e3bf7f1

See more details on using hashes here.

File details

Details for the file dclab-0.67.3-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for dclab-0.67.3-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 243ac4f3d6fd331bb03deee11f8dc75d777ccee8a984376a14aaf5ccfe2b9fd7
MD5 074bef96aaccffc3bc08ac4646d80b6c
BLAKE2b-256 76532976a4517c6e9b2a9916778e0ee66956e3ecfd049941822eb47b8be05c11

See more details on using hashes here.

File details

Details for the file dclab-0.67.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dclab-0.67.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1dd89090e91e309870f62e29c40154b17321fa42ebebafe4b9887f2260c9d5a7
MD5 c93af18b9db98bde7800c9f98f80c12d
BLAKE2b-256 7240362a2a452ddd29d097c78d98875922e061bf11580ecb76d8c6726b63cdf1

See more details on using hashes here.

File details

Details for the file dclab-0.67.3-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for dclab-0.67.3-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 23cb75f9abe6fafedf7c225d69cc2e089f05b8000616682ea805f036a1ef6710
MD5 fb44197e5d48e664ead54abcf5383a94
BLAKE2b-256 a96f391351b02ad1572b53120f7c06d016f5de227897205ab989f4b56120fabd

See more details on using hashes here.

File details

Details for the file dclab-0.67.3-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for dclab-0.67.3-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 54287a9e1714aad764759bc72462909efb1253966a3abbe8e80bdf6451593bd1
MD5 4ad7e0a48a2c4d4637663745fb279406
BLAKE2b-256 3befea31b59280573c9321ed72e71b7e944f6186ad8396a09a4542546b86d38a

See more details on using hashes here.

File details

Details for the file dclab-0.67.3-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: dclab-0.67.3-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 882.5 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.12.10

File hashes

Hashes for dclab-0.67.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 0d8c818a0d816abc60d4243cc750f6d93fd545901d86d083406c9769680fdd15
MD5 2259d969dd98bd527fde98aed2d8290f
BLAKE2b-256 239b4ea3ff2004fd8557c3d0ceacf0932db17036bf19edd12e52f95cd9d274bb

See more details on using hashes here.

File details

Details for the file dclab-0.67.3-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for dclab-0.67.3-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 985c4fa20640f326a7ea6d068d7c8c3dd0ed616fb0fc5027a3d74d124d31f814
MD5 ea83e6fb933ee1dd72a6cee6f5981381
BLAKE2b-256 01464227cda6d017c4e8a6af9826fdb815634dadfc2df9885cedb01fa0f65fe0

See more details on using hashes here.

File details

Details for the file dclab-0.67.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for dclab-0.67.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d66c648a4fd62f70b176825a02c28548e258a8183fcf2f5e1df01bdc060a4294
MD5 28330ff181ec961b8ba3ee70ac340986
BLAKE2b-256 2dacee371071a911761a471df6c94602452fdd624f3654b422dd42f0935cb043

See more details on using hashes here.

File details

Details for the file dclab-0.67.3-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for dclab-0.67.3-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1156bd7c9ba157e6762a46da091da6a9537e086bdb95a3c7508a31cb21af3677
MD5 d4bf46dc8a573086218278840b8d286f
BLAKE2b-256 e99f5b0264320a0c9e21f5a39d6c67e6ff7772513e4178b094a1f65d3ba4a275

See more details on using hashes here.

File details

Details for the file dclab-0.67.3-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for dclab-0.67.3-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c386c0b2af5b70e0b84a26917940aa7c7479ea46dc1975e1d7c37ebe76bebbbc
MD5 172b6cc59b9ce24e246444199a8b1ac4
BLAKE2b-256 1e451e2432b8d7fea688e40f830a56e96645cbb6626c4d256ac2afde628e3eb5

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page